Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92034
標題: 沉積溫度及工作壓力對以丙烷/氨氣製備熱化學氣相沉積碳薄膜微結構之影響
Effects of deposition temperatures and working pressures on the microstructures of carbon thin films prepared by thermal chemical vapor depositon using propane and ammonia
作者: 張孔恩
Kung-En Chang
關鍵字: 碳薄膜;丙烷;氨氣;carbon thin film;propane;ammonia
引用: [1] J. Robertson, “Amorphous carbon.” Adv. Phys. 35 (1986) pp. 317-374. [2] P. Ehrenfreund and B.H. Foing, Science, 329 (2010) 1159. [3] C. Sealy, Nanotoday, 6 (2011) 4. [4] R.J. King, Geology Today, 22 (2006) 71. [5] A. Deneuville, Comptes Rendus Physique, 1 (2000) 81. [6] E. Kohn, M. Adamschik, P. Schmid, A. Denisenko, A. Aleksov, and W. Ebert, Journal of Physics D: Applied Physics, 34 (2001) R77. [7] R.S. Balmer, J.R. Brandon, S.L. Clewes, H.K. Dhillon, J.M. Dodson, I. Friel, P.N. Inglis, T.D. Madgwick, M.L. Markham, T.P. Mollart, N. Perkins, G.A. Scarsbrook, D.J. Twitchen, A.J. Whitehead, J.J. Wilman, and S.M. Woollard, Journal of Physics: Condensed Matter, 21 (2009) 364221. [8] H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [9] S. Saito and A. Oshiyama, Physical Review Letters, 66 (1991) 2637. [10] W. Kratschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature, 347 (1990) 354. [11] H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials and Solar Cells, 93 (2009) 1461. [12] A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature, 350 (1991) 600. [13] S. Iijima, Nature, 354 (1991) 56. [14] R.L. McCreery, Chemical Reviews, 108 (2008) 2646. [15] A. Merko?i, Microchimica Acta, 152 (2006) 157. [16] B.I. Yakabson and R.E. Smalley, Ammons Scientific, 85 (1997) 324. [17] R.S. Ruoff and D.C. Lorents, Carbon, 33 (1995) 925. [18] V.S. Muralidharan and A. Subramania, “Nanoscience and Technology,” Ane Books Pvt. Ltd., New Delhi, India (2009). [19] K.S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [20] A.K. Geim and K.S. Novoselov, Nature Materials, 6 (2007) 183. [21] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature, 446 (2007) 60. [22] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nature Nanotechnology, 3 (2008) 206. [23] A. K. Geim, Science, 324 (2009) 1530. [24] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science, 6 (2008) 1308. [25] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Nature, 457 (2009) 706. [26] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nature Materials, 6 (2007) 652. [27] N. Mohanty and V. Berry, Nano Letters, 8 (2008) 4469. [28] H.B. Heersche, P.J. Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F. Morpurgo, Nature, 446 (2007) 56. [29] C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, and C. Wu, Applied Physics Letters, 99 (2011) 133113. [30] J. Robertson, Advances in Physics, 35 (1986) 317. [31] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Roberston, and W.I. Milne, Journal of Applied Physics, 87 (2000) 789. [32] V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, and D.R. Mackenzie, Journal of Physics: Condensed Matter, 5 (1993) L169. [33] V.S. Veerasamy, G.A.J. Amaratunga, J. S. Park, H. S. Mackenzie, and W.I. Milne, IEEE Transations on Electrics Devices, 42(1995) 577. [34] V.S. Veerasamy, G.A.J. Amaratunga, J. S. Park, W. I. Milne, and H. S. Mackenzie, Applied Physics Letters, 64 (1994) 2297. [35] S.R.P. Silva, and G.A.J. Amaratunga, Thin Solid Films, 270 (1995) 194. [36] J.C. Han, M.L. Tan, J.Q. Zhu, S.H. Meng , B.S. Wang, S.J. Mu, and D.W. Cao, Applied Physics Letters, 90 (2007) 083508. [37] W.S. Choi, K. Kim, J. Yi, and B. Hong, Materials Letters, 62 (2008) 577. [38] A. Kluba, D. Bociaga, and M. Dudek, Diamond and Related Materials, 19 (2010) 533. [39] M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [40] X.M. Tiana, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [41] A. Czyzniewski, Surface and Coatings Technology, 203 (2009) 1027. [42] K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Applied Physics Letters, 77 (2000) 1472. [43] M.L. Hitchman and K.F. Jensen, “Chemical Vapor Deposition,” Academic Press, San Diego, U.S.A. (1993). [44] M.J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [45] P. Delhaes, Carbon, 40 (2002) 641. [46] H.O. Pieson, “Handbook of Chemical Vapor Deposition,” 2nd, Noyes, New York, U.S.A. (1999). [47] M. Ohring, “Materials Science of Thin Films,” 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [48] A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921. [49] S.T. Shiue, P.Y. Chen, R.H. Lee, T.S. Chen, and H.Y. Lin, Surface & Coatings Technology, 205 (2010) 780. [50] P.Y. Chen, “Effects of nitrogen/methane ratios and substrate sizes on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition,” Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2008). [51] L.H. Lai, K.J. Huang, S.T. Shiue, J.T. Chang, and J.L. He, J. Electrochem. Soc., 159 (2012) D367. [52] R.H. Lee, “Hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition: effects of different acetylene/nitrogen ratios, temperatures, pressures, and flow rates on the properties of carbon coatings,” Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2009). [53] J. Robertson, Materials Science and Engineering: R, 37 (2002) 129. [54] Propane Gas Association of Canada, Propane & The Environment, info@propanegas.ca [55] L.H. Lai, S.E. Chiou, H.C. Hsueh, and S.T. Shiue. “ECS Journal of Solid State Science and Technology” 2(11) M5 (2013) [56] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd ed., Prentice Hall, New Jersey, U.S.A. (2001). [57] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York, U.S.A. (2000). [58] A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [59] F. Tuinsta and J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [60] P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [61] J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota, U.S.A. (1992). [62] J. Kwon, Y.S. Kim, K. Yoon, S. M. Lee, and S.I. Park, Ultramicroscopy, 105 (2005) 51. [63] T. Young, Philosophical Transactions of the Royal Society of London, 95 (1805) 65. [64] Instruction manual of the Four-point Probe (Model: QT-50), Quatek Corporation Limited, Taipei, Taiwan. [65] C. Pan, C.J. Chu, J.L. Margrave, and R.H. Hague, Journal of The Electrochemical Society, 141 (1994) 3246. [66] M. Gul?s, C. S. Cojocaru, F. Le Normand, and S. Farhat, Plasma Chemistry and Plasma Processing, 28 (2008) 123. [67] A. Baby, C. M. O. Mahony, and P. D. Maguire, Plasma Sources Science and Technology, 20 (2011) 015003. [68] R.S. Tsang, C.A. Rego, P.W. May, M.N.R. Ashfold, and K.N. Rosser, Diamond and Related Materials, 6 (1997) 247. [69] Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, and S.L. Suib, Surface and Coatings Technology, 200 (2006) 3041. [70] T. Jawhari, A. Roid, and J. Casado, Carbon, 33 (1995) 1561. [71] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. P?schl, Carbon, 43 (2005) 1731. [72] J.M. Vallerot, X. Bourrat, A. Mouchon, and G. Chollon, Carbon, 44 (2006) 1833. [73] S. Potgieter-Vermaak, N. Maledi, N. Wagner, J.H.P. Van Heerden, R. Van Grieken, and J.H. Potgieter, Journal of Raman Spectroscopy, 42 (2011) 123. [74] A.C. Ferrari and J. Robertson, Physical Review B, 63 (2001) 121405. [75] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalh?es-paniago, and M.A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [76] E. Tomasella, C. Meunier, and S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286. [77] M. Lejeune, O.D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M. Benlahsen, Thin Solid Films, 389 (2001) 233. [78] H. Yokomichi, A. Masuda, and N. Kishimoto, Thin Solid Films, 395 (2001) 249. [79] H.S. Zhang, K. Komvopoulos, Journal of Applied Physics, 106 (2009) 093504. [80] P. M?rel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Applied Surface Science, 136 (1998) 105. [81] G.L. D?, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surface and Coatings Technology, 201 (2007) 5815. [82] S. Kaciulius, Surface and Interface Analysis, 44 (2012) 1155. [83] Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, and C.W. Wilmsen, Surface Science, 182 (1987) 431. [84] Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, Journal of Vacuum Science and Technology A, 5 (1987) 2809. [85] J.C. Lascovich and S. Scaglione, Applied Surface Science, 78 (1994) 17. [86] J.C. Lascovich, R. Giorgi, and S. Scaglione, Applied Surface Science, 47 (1991) 17. [87] A. Mezzi and S. Kaciulis, Surface and Interface Analysis, 42 (2010) 1082. [88] J. Sobol-Antosiak and W. S. Ptak, Mater. Letters, 56 (2002) 842. [89] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond and Related Materials, 11 (2002) 845. [90] R.N. Wenzel, The Journal of Physical Chemistry, 53 (1949) 1466. [91] S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [92] T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [93] J.H. Son, M.Y. Park, and S.W. Rhee, Thin Solid Films, 335 (1998) 229. [94] K. Matsumoto, Y. Hirata, S. Sameshima, and N. Matsunaga, J.Ceram. Soc. Jpn., 116 (2008) 486. [95] C. Y. Lin, L. H. Lai, Y. X. Liu, S. T. Shiue, and H. Y. Lin, J. Electrochem. Soc., 158 (2011) D445. [96] L. S. Kershenbaum and J. Martin, A. I. Ch. E. Journal, 13 (1967) 148. [97] L. H. Lai and S. T. Shiue, Surf. Coat. Technol., 215 (2013) 161. [98] L. H. Lai, H. C. Li, S. T. Shiue, T. J. Yang, and H. Y. Lin, ECS J. Solid State Sci. Technol., 2 (2013) N80 .
摘要: 
This study investigates the effects of deposition temperatures and working pressures on the microstructures of carbon thin films prepared by thermal chemical vapor deposition (thermal CVD). The thickness, microstructure, surface properties, and electrical properties of carbon thin films are investigated by field emission scanning electron microscopy, X-ray diffractometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, atomic force microscopy, contact angle meter, and four-points probe, respectively. Experimental results indicate that the deposition rate of carbon thin films increases with increasing the deposition temperature and working pressure. The activation energy of this process is 411 kJ/mol. The crystallinity and ordering degree of carbon thin films decrease with increasing the deposition temperature and working pressure. The number of sp2 carbon sites increases with increasing the deposition temperature, but decreases with increasing the working pressure. As the deposition temperature increases from 1073K to 1153K, the surface roughness of the carbon thin films increases from 1.1 to 15.5 nm. Alternatively, as the working pressure increases form 8 to 40 kPa, the surface roughness of the carbon thin films increases from 1.3 to 15.6 nm. Moreover, the water contanct angles showed an opposite trend to the surface roughness of the carbon thin films. Electrical resistivity of carbon thin films decreases with increasing the deposition temperature, but increase with increasing the working pressure. Finally, the results of thermal CVD carbon deposition using C3H8/NH3 mixtures are compared with those using CH4/NH3, C2H2/NH3, C2H4/NH3, and C3H8/N2 mixtures.

本篇論文主要是以熱化學氣相沉積法製備碳薄膜,探討相同丙烷/氨氣比例之下,以不同的沉積溫度及工作壓力對碳薄膜微結構之影響。本實驗分別利用場發射掃描式電子顯微鏡、拉曼散射光譜儀、X光繞射儀、X光光電子能譜儀、原子力顯微鏡、接觸角量測儀及四點探針儀來分析製程上的碳薄膜的沉積厚度、微觀結構、表面特性與電學性質。研究結果發現,碳薄膜的沉積速率隨著沉積溫度或壓力的增加而上升,其活化能為411 kJ/mol。結晶度隨著沉積溫度及工作壓力的上升而下降。結構有序程度隨著沉積溫度及工作壓力的上升而下降。sp2 C=C鍵結的相對含量隨著沉積溫度的上升而上升,但隨著工作壓力的上升而下降。當沉積溫度從 1073 K 上升至 1153 K 時,表面粗糙度由 1.1 nm 上升至 15.5 nm;工作壓力從8 kPa上升至40 kPa時,表面粗糙度由1.3 nm上升至15.6 nm。水接觸角之趨勢則與表面粗糙度呈相反關係。電阻率隨著沉積溫度的上升而下降,工作壓力的上升而上升。最後,將本實驗丙烷/氨氣與甲烷/氨氣、乙炔/氨氣、乙烯/氨氣和丙烷/氮氣之碳薄膜性質互相比較。
URI: http://hdl.handle.net/11455/92034
其他識別: U0005-2811201416191431
Rights: 同意授權瀏覽/列印電子全文服務,2015-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-5099066025-1.pdf5.43 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.