Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92042
標題: p-CuO/n-SnO2異質接面奈米複合材料的製備及對硫化氫感測能力的提升
Fabrication and enhanced hydrogen sulfide sensing properties of p-CuO/n-SnO2 heterojunction nanocomposites
作者: 李奕昇
Yi-Sheng Li
關鍵字: 二氧化錫;氧化銅;硫化氫;氣體感測器;奈米複合材料;SnO2;CuO;H2S;gas sensor;nanocomposites
引用: 1. A. Khanna, R. Kumar, S. S. Bhatti, “CuO-doped SnO2 thin films as hydrogen sulfide gas sensor” Appl. Phys. Lett. 82 (2003) 24. 2. T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, “A New Detector for Gaseous Components Using Semiconductive Thin Films” Anal. Chem. 34 (1962) 1502. 3. C. O. Park, S. A. Akbar, “Ceramics for chemical sensing” J. Mater. Sci. 38 (2003) 4611-4637. 4. H. J. Kim, J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview” Sens. Actuat. B 192 (2014) 607-627. 5. N. Barsan, U. Weimer, “Conduction model of metal oxide gas sensors” J. Electroceram. 7 (2001) 143-167. 6. I. D. kim, A. Rothschild, H. L. Tuller, “Advances and new directions in gas-sensing devices” Acta Materialia 61 (2013) 974. 7. J. H. Liu, X. J. Huang, F. L. Meng, “The Dynamic Measurements of SnO2 Gas sensors and their Applications” In science and technology of chemiresistor gas sensors 2007 177-214. 8. M. E. Franke, T. J. Koplin, U. Simon, “Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?” Small, 2(1) (2006) 36-50. 9. C. Jim, H. Kim, S. An, C. Lee, “Highly sensitive H2S gas sensors based on CuO-Coated ZnSnO3 nanorods synthesized by thermal evaporation” Ceram. Int. 38 (2012) 5973-5978. 10. S. Sena, K. P. Muthea, N. Joshi, S. C. Gadkari, S. K. Guptaa, Jagannatha, M. Royb, S. K. Deshpandec, J. V. Yakhmi, “Room temperature operating ammonia sensor based on tellurium thin film” Sens. Actuat. B 98(2-3) (2004) 154-159. 11. D. Tsiulyanua, S. Marian, V. Miron, H. D. Liess, “High sensitive tellurium based NO2 gas sensor” Sens. Actuat. B 73 (2001) 35. 12. S. W. Choi, A. Katoch, G. J. Sun, S. S. Kim, “Bimetallic Pd/Pt nanoparticle-functionalized SnO2 nanowires for fast response and recovery to NO2” Sens. Actuat. B 181 (2013) 446-53. 13. N. Singh, A. Ponzoni, R. Kumar, G. Pooi, S. Lee, E. Comini, “Synthesis of In2O3-ZnO core-shell nanowires and their application in gas sensing” Sens. Actuat. B 160 (2011) 1346-1351. 14. L. Wang, Z. Lou, R. Wang, T. Fei, T. Zhang, “Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor” Sens. Actuat. B 171-172 (2012) 1180-1185. 15. K. I. Choia, H. J. Kima, Y. C. Kangb, J. H. Lee, “Ultraselective and ultrasensitive detection of H2S in highly humid atmosphere using CuO-loaded SnO2 hollow spheres for real-time diagnosis of halitosis” Sens. Actuat. B 194 (2014) 371-376. 16. J. H. Lee, “Gas sensors using hierarchical and hollow oxide nanostructures: Overview” Sens. Actuat. B 140 (2009) 319–336. 17. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, “Electrospun nanofibers of ptype NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity” Appl. Mater. Interfaces 2 (2010) 2915-2923. 18. Y. Ishida, A. Fujimori, H. Ohta, M. Hirano, H. Hosono, “Potential profiling of the nanometer-scale charge-depletion layer in n-ZnO/p-NiO junction using photoemission spectroscopy” Appl. Phys. Lett. 89 (2006) 153502. 19. W. Y. Cheng, Y. F. Lin, S. Y. Lu, “Nanowires improved charge separation and light utilization in metal-oxide solar cells” Appl. Phys. Lett. 99 (2011) 063107. 20. H. Long, G. Fang, H. Huang, X. Mo, W. Xia, B. Dong, X. Meng, X. Zhao, “Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes” Appl. Phys. Lett. 95 (2009) 13509. 21. N. Singh, A. Ponzoni, R. Kumar, G. Pooi, S. Lee, E. Comini, “Synthesis of In2O3-ZnO core-shell nanowires and their application in gas sensing” Sens. Actuat. B 160 (2011) 1346-1351. 22. I. S. Hwang, J. K. Choi, H. S. Woo, S. J. Kim, S. Y. Jung, T. Y. Seong, I. D. Kim, J. H. Lee, “Facile Control of C2H5OH Sensing Characteristics by Decorating Discrete Ag Nanoclusters on SnO2 Nanowire Networks” Appl. Mater. Interfaces 3 (2011) 3140-3145. 23. L. A. Patil, D. R. Patil, “Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature” Sens. Actuat. B 120 (2006) 316-323. 24. Q. Wan, J Huang, Z. Xie, T. Wang, E. N. Dattoli, W. Lu, “Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application” Appl. Phys. Lett. 92 ( 2008) 102101. 25. C. Jin, H. Kim, S. An, C. Lee, “Highly sensitive H2S gas sensors based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation” Ceram. Int. 38 (2012) 5973-5978. 26. T. S. Wang, Q. S. Wang, C. L. Zhu, Q. Y. Ouyang, L. H. Qi, C. Y. Li, G. Xiao, P. Gao, Y. J. Chen, “Synthesis and enhanced H2S gas sensing properties of α-MoO3/CuO p-n junction nanocomposite” Sens. Actuat. B 171-172 (2012) 256-262. 27. D. J. Yoo, U. Tamaki, S. J. Park, N. Miura, N. Yamazoe, “Copper oxide-loaded tin dioxide thin film for detection of dilute hydrogen sulfide” J. Appl. Phys. 34 (1995) 455-457. 28. T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, “Sensing behavior of CuO-loaded SnO2 element for H2S detection” Chem. Lett. 4 (1991) 575-578. 29. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe, “Dilute hydrogen sulfide sensing properties of CuO-SnO2 thin film prepared by low pressure evaporation method” Sens. Actuat. B 49 (1998) 121-125. 30. V. R. Katti, A. K. Debnath, K. P. Muthe, M. Kaur, A. K. Dua, S. C. Gadkari, S. K. Gupta, V. C. Sahni, “Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation” Sens. Actuat. B 96 (2003) 245-252. 31. S. J. Kim, C. W. Na, I. S. Hwang, J. H. Lee, “One-pot hydrothermal synthesis of CuO-ZnO composite hollow spheres for selective H2S detection” Sens. Actuat. B 168 (2012) 83-89. 32. N. Datta, N. Ramgir, M. Kaur, S. K. Ganapathi, A. K. Debnath, D. K. Aswal, S. K. Gupta, “Selective H2S sensing characteristics of hydrothermally grown ZnO-nanowires network tailored by ultrathin CuO layers” Sens. Actuat. B 166-167 (2012) 394-401. 33. J. Kim, W. Kim, K. Yong, “CuO/ZnO heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing” J. Phys. Chem. C 116 (2012) 15682-15691. 34. Y. J. Maa, F. Zhoub, L. Lub, Z. Zhanga, “Low-temperature transport properties of individual SnO2 nanowire” Solid State Commun. 130(5) (2004) 313-316. 35. M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei, L. Zhang, “Fabrication and Structural Characterization of Large-Scale Uniform SnO2 nanowire Array Embedded in Anodic Alumina Membrane”Chem. Mater. 13(11) (2001) 3859-3861. 36. Z. R. Dai, Z. W. Pan, Z. L. Wang, “Novel Nanosructures Functional Oxides Synthesized by Thermal Evaporation” Adv. Funct. Mater. 13(1) (2003) 9-24. 37. L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, “Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries” Electrochem. Commun. 12(10) (2010) 1383-1386. 38. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts” Appl. Phys. Lett. 81(10) (2002) 1869. 39. L. V. Thong, N. D. Hoa, D. T. T. Le, D. T. Viet, P. D. Tam, A. T. Le, N. V. Hieu “On-chip fabrication of SnO2-nanowire gas sensor: The effect of growth time on sensor performance” Sens. Actuat. B 146 (2010) 361-367. 40. F. Shao, M. W. G. Hoffmanna, J. D. Prades, R. Zamani, J. Arbiol, J. R. Morantea, E. Varechkina, M. Rumyantseva, A. Gaskove, I. Giebelhausf, T. Fischer, S. Mathurf, F. Hernandez-Ramireza, “Heterostructured p-CuO (nanoparticle)/n-SnO2(nanowire) devices for selective H2S detection” Sens. Actuat. B 181 (2013) 130-135. 41. I. S. Hwanga, S. J. Kim, J. K. Choi, J. J. Jung, D. J. Yoo, K. Y. Dongc, B. K. Ju, J. H. Lee, “Large-scale fabrication of highly sensitive SnO2 nanowire network gas sensors by single step vapor phase growth” Sens. Actuat. B 165 (2012) 97-103. 42. I. S. Hwang, J. K. Choi, S. J. Kim, K. Y. Dong, J. H. Kwon, B. K. Ju, J. H. Lee, “Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO” Sens. Actuat. B 142 (2009) 105-110. 43. Y. J. Chen, F. n. Menga, H. l. Yu, C. l. Zhu, T. s. Wanga, P. Gaob, Q. y. Ouyang, “Sonochemical synthesis and ppb H2S sensing performances of CuO nanobelts” Sens. Actuat. B 176 (2013) 15-21. 44. H. Kim, C. Jin, S. Park, S. Kim, C. Lee, “H2S gas sensing properties of bare and Pd-functionalized CuO nanorods” Sens. Actuat. B 161 (2012) 594 -599 45. Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, J. H. Lee, “CuO nanowire gas sensors for air quality control in automotive cabin” Sens. Actuat. B 135 (2008) 298-303. 46. N. D. Hoa, N. V. Quy, M. A. Tuan, N. V. Hieu, “Facile synthesis of p-type semiconducting cupric oxide nanowires and their gas-sensing properties” Physica E 42 (2009) 146-149. 47. S. Steinhauer, E. Brunet, T. Maiera, G. C. Mutinatia, A. Kock, O. Freudenberg, C. Gspanc, W. Groggerc, A. Neuholde, R. Resel, “Gas sensing properties of novel CuO nanowire devices” Sens. Actuat. B 187 (2013) 50- 57. 48. S. Steinhauer, E. Brunet, T. Maiera, G. C. Mutinatia, A. Kock, O. Freudenberg, C. Gspanc, W. Groggerc, A. Neuholde, R. Resel, “Gas sensing properties of novel CuO nanowire devices” J. Cryst. Growth 384 (2013) 100-106. 49. F. Yu, D. Tang, K. Hai, Z. Luo, Y. Chen, X. He, Y. Peng, H. Yuan, D. Zhao, Y. Yang, “Fabrication of SnO2 one-dimensional nanostructures with graded diameter by chemical vapor deposition method” J. Cryst. Growth 312(2) (2010) 220-225. 50. X. juang, T. Herricks, Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air” Nano Lett. 2(12) (2002) 1333. 51. C. H. Xu, C. H. Woo, S. Q. Shi, “Formation of CuO nanowires on Cu foil” Chem. Phys. Let. 399 (2004) 62. 52. Y. J. Chen, F. n. Menga, H. l. Yu, C. l. Zhu, T. s. Wanga, P. Gaob, Q. y. Ouyanga, “Sonochemical synthesis and ppb H2S sensing performances of CuO nanobelts” Sens. Actuat. B 176 (2013) 15-21. 53. S. W. Choi, J. Zhang, K. Akash, S. S. Kim, “H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers” Sens. Actuat. B 169 (2012) 54-60. 54. M. K. Verma, V. Gupta, “A highly sensitive SnO2–CuO multilayered sensor structure for detection of H2S gas” Sens. Actuat. B 166-167 (2012) 378-385. 55. Y. Zhao, X. He, J. Li, X. Gao, J. Jia, “Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties” Sens. Actuat. B 165 (2012) 82-87. 56. J. H. Jeun, S. H. Hong, “CuO-loaded nano-porous SnO2 films fabricated by anodic oxidation and RIE process and their gas sensing properties” Sens. Actuat. B 151 (2010) 1-7. 57. S. Manorama, G. S. Devi, V. J. Rao, “Hydrogen sulfide sensor based on tin oxide deposited by spray pyrolysis and microwave plasma chemical vapor deposition” Appl. Phys. Lett. 64 (1994) 3163. 58. A. Khanna, R. Kumar, S. S. Bhatti, “CuO-doped SnO2 thin films as hydrogen sulfide gas sensor” Appl. Phys. Lett. 82 (2003) 4388. 59. A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, P. K. Patanjali,“Response speed of SnO2-based H2S gas sensors with CuO nanoparticles”Appl. Phys. Lett. 84 (2004) 1180. 60. V. R. Katti, A. K. Debnath, K. P. Muthe, M. Kaur, A. K. Dua, S. C. Gadkari, S. K. Gupta, V. C. Sens. Sahni, “Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation”Sens. Actuat. B 96 (2003) 245. 61. X. H. Zhou, Q. X. Cao, H. Huang, P. Yang, Y.Mater. Hu, “Study on sensing mechanism of CuO–SnO2 gas sensors” Sci. Eng. B 99 (2003) 44. 62. X. Kong, Y.Sens. Li, “High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature” Sens. Actuat. B 105 (2005) 449. 63. K. Y. Donga, J. K. Choi, I. S. Hwangb, J. W. Lee, B. H. Kang, D. J. Hama, J. H. Lee, B. K. Jua, “Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater” Sens. Actuat. B 157 (2011) 154-161. 64. N. S. Ramgir, S. K. Ganapathi, M. Kaur, N. Datta, K. P. Muthe, D. K. Aswal, S. K. Gupta, J. V. Yakhmi, “Sub-ppm H2S sensing at room temperature using CuO thin films” Sens. Actuat. B 151 (2010) 90-96. 65. H. Lia, J. Xu, Y. Zhu, X. Chen, Q. Xiang, “Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires” Talanta 82 (2010) 458-463. 66. S. W. Choi, A. Katoch, J. Zhang, S. S. Kim, “Electrospun nanofibers of CuO SnO2 nanocomposite as semiconductor gas sensors for H2S detection” Sens. Actuat. B 176 (2013) 585-591. 67. Y. Zhao, X. He, J. Li, X. Gao, J. Jia, “Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties” Sens. Actuat. B 165 (2012) 82-87. 68. M. Choudharya, N. K. Singh, V.N. Mishra, R. Dwivedi, “Selective detection of hydrogen sulfide using copper oxide-doped tin oxide based thickfilm sensor array” Mater. Chem. Phys. 142 (2013) 370-380. 69. X. Zhou, Q. Cao, H. Huang, P. Yang, Y. Hu, “Study on sensing mechanism of CuO/SnO2 gas sensors” Materials Science and Engineering B 99 (2003) 44-47. 70. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors” Sensors 10 (2010) 2088-2106.
摘要: 
In this study, we successfully synthesized SnO2 and CuO nanowires by using a vapor transport method and a thermal oxidation method, respectively, in a horizontal tubular furnace. Then, a homogeneous dispersion solutions contained with SnO2 and CuO nanowires were obtained by using a simple solution dispersion method. Gas sensors based on the p-CuO/n-SnO2 heterojunction nanocomposites were fabricated by dispensing the homogeneous dispersion solution on the Al2O3 substrate on which a sliver conductive paste was screen-printed to form interdigitated electrodes. The gas sensing experiments were performed in a house-made tubular furnace by introducing the desired concentration of H2S through the quartz tube at different temperature.
The experimental results show that the SnO2 and CuO nanowires are single-crystalline. The diameters of SnO2 and CuO nanowires are about 150~250 nm and 50~150 nm, respectively, and the lengths for both nanowires are up to several micrometers. For the gas sensing prosperities, the p-CuO/n-SnO2 heterojunction nanocomposites gas sensor exhibit better long term stability and recovery ability than the bare SnO2 and CuO nanowire. Besides, the bare SnO2 and CuO nanowires cannot sense H2S gas at room temperature. In contrast, p-CuO/n-SnO2 heterojunction nanocomposites show good H2S gas sensing performance at room temperature due to their high specific surface areas and formation of numerous p-n junctions between the CuO nanowires and the SnO2 nanowires. In addition, CuO can react wih H2S gas to form metallic CuS, which leads to a huge variation in electric prosperity, thus a high sensitivity at room temperature.

本實驗利用水平爐管分別以氣相傳輸法製備出SnO2奈米線和以熱氧化法製備出CuO奈米線,再利用簡單的溶液分散法調製出均勻的SnO2奈米線和CuO奈米線混合分散液,將混合分散液滴在我們自製的指叉型導電銀膠電極後,即可得到p-CuO/n-SnO2異質接面奈米複合材料氣體感測元件,最後再用自行組裝的氣感量測系統量測元件在不同溫度對不同濃度的H2S氣體的感測能力。
由實驗結果得知,製備出的SnO2奈米線和CuO奈米線皆為單晶結構,直徑分別為150~250nm和50~150nm,長度皆可達數個微米。在氣體感測方面,相較於個別的CuO奈米線和SnO2奈米線,p-CuO/n-SnO2異質接面奈米複合材料在300℃的工作溫度雖然沒有較高的靈敏度,但長期穩定性改善了許多;另外單獨的CuO和SnO2奈米線在室溫下無法偵測H2S氣體,不過p-CuO/n-SnO2異質接面奈米複合材料因為有較多的p-n異質接面和較高的比表面積,加上CuO與H2S氣體會產生特殊的反應會形成具金屬性的CuS,所以在室溫對H2S氣體即有感測能力,而且因為形成具金屬性的CuS,使得元件的電性改變會大幅增加,在室溫對低濃度H2S氣體也可以得到很高的靈敏度。
URI: http://hdl.handle.net/11455/92042
其他識別: U0005-0207201415264900
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101066030-1.pdf4.87 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.