Please use this identifier to cite or link to this item:
標題: 熱化學氣相沉積法應用於碳薄膜的製備及石墨烯的合成
Thermal chemical vapor deposition applied on preparation of carbon thin films and graphene synthesis
作者: 張芷菱
Chih-Ling Chang
關鍵字: 熱化學氣相沉積;石墨烯;熱裂解碳;感應耦合電漿;Thermal chemical vapor deposition;graphene;pyrolytic carbon;inductively coupled plasma
引用: [1] J. Robertson, Materials Science and Engineering: R, 37 (2002) 129. [2] P. Ehrenfreund and B.H. Foing, Science, 329 (2010) 1159. [3] C. Sealy, Nanotoday, 6 (2011) 4. [4] R.J. King, Geology Today, 22 (2006) 71. [5] J. C. Pu, S. F. Wang, and J. C. Sung, Applied Surface Science, 256 (2009) 668. [6] J. Robertson, Advances in Physics, 35 (1986) 317. [7] X. He, J. Song, H. Xia, J. Tan, B. Zhang, Z. He, X. Zhou, Z. Zhu, M. Zhao, X. Liu, L. Xu, and S. Bai, Carbon, 68 (2014) 95. [8] S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, Surface & Coatings Technology, 202 (2007) 798. [9] K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 65 (2001) 163. [10] R.N. Basu, O. Altin, M.J. Mayo, C.A. Randall, and S. Eser, Journal of The Electrochemical Society, 148 (2001) A506. [11] H. Mohammadia and K. Mequanint, Medical Engineering & Physics, 33 (2011) 131. [12] A. Kluba, D. Bociaga, and M. Dudek, Diamond and Related Materials, 19 (2010) 533. [13] M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [14] X.M. Tiana, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [15] A. Czyzniewski, Surface and Coatings Technology, 203 (2009) 1027. [16] K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Applied Physics Letters, 77 (2000) 1472. [17] H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [18] S. Saito and A. Oshiyama, Physical Review Letters, 66 (1991) 2637. [19] H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials and Solar Cells, 93 (2009) 1461. [20] A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature, 350 (1991) 600. [21] S. Iijima, Nature, 354 (1991) 56. [22] R.L. McCreery, Chemical Reviews, 108 (2008) 2646. [23] V.S. Muralidharan and A. Subramania, “Nanoscience and Technology,” Ane Books Pvt. Ltd., New Delhi, India (2009). [24] A. Merkoçi, Microchimica Acta, 152 (2006) 157. [25] M. Ohring, “Materials Science of Thin Films,” 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [26] A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921. [27] K.S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [28] A.K. Geim and K.S. Novoselov, Nature Materials, 6 (2007) 183. [29] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature, 446 (2007) 60. [30] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science, 6 (2008) 1308. [31] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nature Nanotechnology, 3 (2008) 206. [32] A. K. Geim, Science, 324 (2009) 1530. [33] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Nature, 457 (2009) 706. [34] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nature Materials, 6 (2007) 652. [35] N. Mohanty and V. Berry, Nano Letters, 8 (2008) 4469. [36] H.B. Heersche, P.J. Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F. Morpurgo, Nature, 446 (2007) 56. [37] C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, and C. Wu, Applied Physics Letters, 99 (2011) 133113. [38] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 306 (2004) 666. [39] W. S. Hummers, R. E. Offeman, Journal of the American Chemical Society, 80 (1958) 1339. [40] M. Cardinali, L. Valentini, P. Fabbri, J. M. Kenny, Chemical Physics Letters, 508 (2011) 285. [41] W. Chen, L. Yan, P. R. Bangal, Carbon, 4 8 ( 2 0 1 0 ) 1 1 4 6. [42] G. Compagnini, L. D’Urso, O. Puglisi, G. A. Baratta, G. Strazzulla, Carbon, 4 7 ( 2 0 0 9 ) 1 6 0 5. [43] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon, 45 (2007) 1558. [44] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Science, 312 (2006) 1191. [45] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Journal of Physical Chemistry B, 108 (2004) 19912. [46] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nature Materials, 8 (2009) 203. [47] J. F. Dayen, A. Mahmood, D. S. Golubev, R. J. Isabelle, P. Salles, E. Dujardin, Small, 4 (2008) 716. [48] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science, 324 (2009) 1312. [49] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, Applied Physics Letters, 93 (2008) 113103. [50] S. Bhaviripudi, X. Jia, M. S. Dresselhaus, J. Kong, Nano Letters, 10 (2010) 4128. [51] X. Li, W. Cai, L. Colombo, R. S. Ruoff, Nano Letters, 9 (2009) 4268. [52] J. L. Qi, W. T. Zheng, X. H. Zheng, X. Wang, H. W. Tian, Applied Surface Science, 257 (2011) 6531. [53] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Letters, 9 (2008) 30. [54] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature, 457 (2009) 706. [55] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner,; A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S Ruoff, Science, 324(2009)1312–1314. [56] Y. Zhang, L. Zhang, and C.W, Zhou, Accounts of Chemical research , 46 (2013) 2329–2339 [57] M.J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [58] P. Delhaes, Carbon, 40 (2002) 641. [59] H.O. Pieson, “Handbook of Chemical Vapor Deposition,” 2nd, Noyes, New York, U.S.A. (1999). [60] M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing,” (1994). [61] J. Hopwood, Plasma Source Science and Technology, 1 (1992) 109. [62] Y. S. Han and J. Y. Lee, Electrochim. Acta, 48 (2003) 1073. [63] Y. S. Ding, W. N. Li, S. Iaconetti, X. F. Shen, J. DiCarlo, F. S. Galasso, and S. L. Suib, Surf. Coat. Technol., 200 (2006) 3041. [64] C. A. Taylor and W. K. S. Chiu, Surf. Coat. Technol., 168 (2003) 1. [65] W. N. Li, Y. S. Ding, S. L. Suib, J. F. DiCarlo, and F. S. Galasso, Surf. Coat. Technol., 190 (2005) 366. [66] R. S. Chu and S. T. Shiue, Thin Solid Films, 517 (2009)4879-4882. [67] L. H. Lai, K. C. Wu and S. T. Shiue, Thin Solid Film., 570 (2014) 356-362. [68] L. H. Lai, K. J. Huang, S. T. Shiue, T. J. Yang, and J. L. He, Journal of the electrochemical society, 159, (2012) D367-D374 [69] L. H. Lai, S. E. Chiou, H. C. Hsueh, and S. T. Shiue, ECS J. Solid State Sci. Technol,3 (2013): M45-M53 [70] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, U.S.A. (2001). [71] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York, U.S.A. (2000). [72] A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [73] F. Tuinsta and J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [74] P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [75] J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota, U.S.A. (1992). [76] J. Kwon, Y.S. Kim, K. Yoon, S. M. Lee, and S.I. Park, Ultramicroscopy, 105 (2005) 51. [77] 汪建民主編,材料分析,中國材料科學學會 (2008)。 [78] Instruction manual of the Four-point Probe (Model: QT-50), Quatek Corporation Limited, Napson Corporation, Japan. [79] C.N. Wei, “Applications of Residual Gas Analyzer in Vacuum Facilities,” Master Thesis, Department of Mechanical Engineering Chung Yuan University, Taiwan (2005). [80] X. Bourrat, J. Lavenac, F. Langlais, and R. Naslain, Carbon, 39 (2001) 2376. [81] N. Shimodaira and A. Masui, J. Appl. Phys., 92 (2002) 902. [82] A. C. Ferrari and J. Robertson, Phys. Rev. B, 63 (2001) 121405-1. [83] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, 43 (2005) 1731. [84] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, Appl. Phys. Lett., 88 (2006) 163106-1. [85] H. S. Zhang and K. Komvopoulos, J. Appl. Phys., 106 (2009) 093504-1. [86] K. Matsumoto, Y. Hirata, S. Sameshima, and N. Matsunaga, J.Ceram. Soc. Jpn., 116 (2008) 486. [87] H. Yokomichi, A. Masuda, and N. Kishimoto, Thin Solid Films, 395 (2001) 249. [88] G. L. Dû, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surf. Coat. Technol., 201 (2007) 5815. [89] S. Kaciulius, Surf. Interface. Anal., 44 (2012) 1155. [90] Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, Surf. Sci., 182 (1987) 431. [91] J. C. Lascovich and S. Scaglione, Appl. Surf. Sci., 78 (1994) 17. [92] J. C. Lascovich, R. Giorgi, and S. Scaglione, Appl. Surf. Sci., 47 (1991) 17. [93] A. Mezzi and S. Kaciulis, Surf. Interface. Anal., 42 (2010) 1082. [94] J. Sobol-Antosiak and W. S. Ptak, Mater. Letters, 56 (2002) 842. [95] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond and Related Materials, 11 (2002) 845. [96] R.N. Wenzel, The Journal of Physical Chemistry, 53 (1949) 1466. [97] S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [98] T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [99] J.H. Son, M.Y. Park, and S.W. Rhee, Thin Solid Films, 335 (1998) 229. [100] P. Y. Chen, S. T. Shiue, and H. Y. Lin, Thin Solid films, 518 (2010) 2883. [101] A. Becker and K. J. Huttinger, Carbon, 36 (1998) 213. [102] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Physical Review Letters, 97 (2006) 187401. [103] V. Rama, E. J. Howard, L. C. Wu, Journal of Applied Physics, 77 (1995) 2714. [104] W. X. Wang, S. H. Liang, T. Yu, D. H. Li, Y. B. Li, X. F. Han, Journal of Applied Physics, 109 (2011) 07C501. [105] B. Krauss, N. I. Péter, S. Viera, L. P. Biro, K. Klitzing, J. H. Smet, Nano Letters, 10 (2010) 4544. [106] V. N. Popov, L. Henrard, P. Lambin, Carbon, 4 7 ( 2 0 0 9 ) 2 4 4 8. [107] R. J. Nemanich, S. A. Solin, Physical Review B, 20 (1979) 392.
There are two parts we investigated in this study. The effects of C2H6/(C2H6+Ar) ratio on the properties of carbon films prepared by thermal chemical vapor deposition. We also discuss the effects of mass flow rate, deposition temperature and working pressure on the deposition rates of carbon films. Another part we investigated the properties of n-type graphene prepared by plasma enhanced chemical vapor deposition using CH4、NH3、H2 and Ar as precursor gas. And discuss the effects of different rf-powers on the quality of graphene.
The thickness, microstructure, surface property, electrical property of carbon films and residual gas of process were investigated by field emission scanning electron microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, atomic force microscopy, four-points probe, and residual gas analyzer. Residual gases analysis results reveal that the main species in the gas phase contain H2, C2H2, C2H3, and C2H4. Experimental results also indicate that the deposition rate raises with increasing C2H6/(C2H6+Ar) ratio, residence time, deposition temperature, and working pressure. Finally, the results of thermal CVD carbon deposition using C2H6/Ar mixtures are compared with that using CH4/N2, C2H2/N2, C2H4/N2, and C3H8/N2 mixtures.Another part we use Raman scattering spectrometer to determine the number and quality of graphene and discuss the effects of adding plasma. The results indicate that the single layer graphene can successfully be prepared at the radio frequency 50W and 100W. But with increasing the radio frequency power, the more defective multi-layer graphene were prepared.

在本實驗第一部份碳薄膜性質探討分別利用殘留氣體分析儀、X光繞射儀、拉曼散射光譜儀、X光光電子能譜儀、原子力顯微鏡及四點探針儀來分析製程上的殘留氣體、碳薄膜的沉積厚度、微觀結構、表面特性與電學性質。由殘留氣體分析結果可知,氣相中的主要產物包含了H2、C2H2、C2H3和C2H4。研究結果發現,碳薄膜的沉積速率隨著C2H6/(C2H6+Ar) 比例增加、停留時間、沉積溫度以及工作壓力的增加而上升。最後,將本實驗乙烷/氬氣與甲烷/氮氣、乙炔/氮氣、乙烯/氮氣和丙烷/氮氣之碳薄膜性質互相比較。本實驗第二部份石墨烯則是利用拉曼散射光譜儀量測以判斷其層數及品質並探討加入電漿之影響。由結果可知,在射頻功率50瓦及100 瓦的拉曼結果顯示石墨烯的特性峰值2D-band較明顯,為品質較好的單層石墨烯;而隨著射頻功率再增加則會獲得缺陷較多、品質不佳的少層石墨烯。
其他識別: U0005-2606201512553600
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-08起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102066021-1.pdf6.64 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.