Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92096
標題: 以合成生物學技術研發新世代類胡蘿蔔素生產平台
Development of synthetic biology platform for biosynthesis of carotenoid
作者: Caroline Thia
程凱若
關鍵字: 合成生物學;PGASO;蝦青素;細胞工廠;synthetic biology;PGASO;Astaxanthin;cell factory
引用: Aoi W, Naito Y, Sakuma K, et al., 2003. Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal 5, 139-44. Aslanidis C, De Jong PJ, 1990. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18, 6069-74. Baker R, Gunther C, 2004. The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends in Food Science & Technology 15, 484-8. Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R, Vaiskunaite R, 2007. USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35, 1992-2002. Buttle LG, Crampton VO, Williams PD, 2001. The effect of feed pigment type on flesh pigment deposition and colour in farmed Atlantic salmon, Salmo salar L. Aquaculture Research 32, 103-11. Chang JJ, Ho CY, Ho FJ, et al., 2012. PGASO: A synthetic biology tool for engineering a cellulolytic yeast. Biotechnol Biofuels 5, 53. Chang JJ, Ho FJ, Ho CY, et al., 2013. Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol Biofuels 6, 19. Chemler JA, Yan Y, Koffas MA, 2006. Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microb Cell Fact 5, 20. Cross CE, Halliwell B, Borish ET, et al., 1987. Oxygen radicals and human disease. Ann Intern Med 107, 526-45. De La Fuente JL, Rodriguez-Saiz M, Schleissner C, Diez B, Peiro E, Barredo JL, 2010. High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol 148, 144-6. Fonseca GG, Heinzle E, Wittmann C, Gombert AK, 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79, 339-54. Fraser PD, Bramley PM, 2004. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43, 228-65. Gao Z, Meng C, Zhang X, et al., 2012. Differential expression of carotenogenic genes, associated changes on astaxanthin production and photosynthesis features induced by JA in H. pluvialis. PLoS One 7, e42243. Gassel S, Schewe H, Schmidt I, Schrader J, Sandmann G, 2013. Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett 35, 565-9. Gerjets T, Sandmann M, Zhu C, Sandmann G, 2007. Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species. Biotechnol J 2, 1263-9. Gerster H, 1991. Review: antioxidant protection of the ageing macula. Age Ageing 20, 60-9. Gibson DG, Benders GA, Axelrod KC, et al., 2008. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105, 20404-9. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO, 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343-5. Hartley JL, Temple GF, Brasch MA, 2000. DNA cloning using in vitro site-specific recombination. Genome Res 10, 1788-95. Hong J, Wang Y, Kumagai H, Tamaki H, 2007. Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130, 114-23. Hong M-E, Choi SP, Park Y-I, et al., 2012. Astaxanthin production by a highly photosensitive Haematococcus mutant. Process Biochemistry 47, 1972-9. Hussein G, Goto H, Oda S, Sankawa U, Matsumoto K, Watanabe H, 2006. Antihypertensive potential and mechanism of action of astaxanthin: III. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol Pharm Bull 29, 684-8. Johnson EA, 2003. Phaffia rhodozyma: colorful odyssey. Int Microbiol 6, 169-74. Kegel A, Martinez P, Carter SD, Astrom SU, 2006. Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 34, 1633-45. Kim JH, Kang SW, Kim SW, Chang HI, 2005. High-level production of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1 using statistical experimental designs. Biosci Biotechnol Biochem 69, 1743-8. Lemuth K, Steuer K, Albermann C, 2011. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact 10, 29. Li MZ, Elledge SJ, 2005. MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat Genet 37, 311-9. Li MZ, Elledge SJ, 2007. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4, 251-6. Liu Q, Li MZ, Leibham D, Cortez D, Elledge SJ, 1998. The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr Biol 8, 1300-9. Mann V, Harker M, Pecker I, Hirschberg J, 2000. Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18, 888-92. Marsischky G, Labaer J, 2004. Many paths to many clones: a comparative look at high-throughput cloning methods. Genome Res 14, 2020-8. Miki W, 1991. Biological functions and activities of animal carotenoids. Pure and Applied Chem 63, 141-6. Miyawaki H, Takahashi J, Tsukahara H, Takehara I, 2008. Effects of astaxanthin on human blood rheology. J Clin Biochem Nutr 43, 69-74. Murillo E, 1992. [Hypercholesterolemic effect of canthaxanthin and astaxanthin in rats]. Arch Latinoam Nutr 42, 409-13. Newman DJ, Cragg GM, 2007. Natural products as sources of new drugs over the last 25 years. J Nat Prod 70, 461-77. Niklitschek M, Alcaino J, Barahona S, et al., 2008. Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous. Biol Res 41, 93-108. Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H, 2007. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73, 1355-61. Okai Y, Higashi-Okai K, 1996. Possible immunomodulating activities of carotenoids in in vitro cell culture experiments. Int J Immunopharmacol 18, 753-8. Pachuk CJ, Samuel M, Zurawski JA, Snyder L, Phillips P, Satishchandran C, 2000. Chain reaction cloning: a one-step method for directional ligation of multiple DNA fragments. Gene 243, 19-25. Paniagua-Michel J, Olmos-Soto J, Ruiz MA, 2012. Pathways of carotenoid biosynthesis in bacteria and microalgae. Methods Mol Biol 892, 1-12. Pashkow F, Watumull D, Campbell C, 2008. Astaxanthin: a novel potential treatment for oxidative stress and in ammation in cardiovascular disease. Am J Cardiol 101, 58D-68D. Peng J, Xiang W, Tang Q, Sun N, Chen F, Yuan J, 2008. Comparative analysis of astaxanthin and its esters in the mutant E1 of Haematococcus pluvialis and other green algae by HPLC with a C30 column. Sci China C Life Sci 51, 1108-15. Quan J, Tian J, 2009. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4, e6441. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26, 1231-7. Rodriguez-Amaya DB, 1989. Critical review of provitamin A determination in plant foods. J. Micronutrient Anal 5, 5: 191-225. Rodriguez-Saiz M, De La Fuente JL, Barredo JL, 2010. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88, 645-58. Sander LC, Sharpless KE, Craft NE, Wlse SA, 1994. Development of Engineered Stationary Phases for the Separation of Carotenoid Isomers. Anal. Chem 66l, 1667-74. Sang HL, Cherl WP, Wong SP, Young CL, Eui SC, Yeong. LH, 1997. Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by Astaxanthin containing egg yolks. Agric. Chem. Biotechnol. 40, 490-4. Shao Z, Zhao H, Zhao H, 2009. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37, e16. Shi J, Le Maguer M, 2000. Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 40, 1-42. Shimidzu N, Goto M, Miki W, 1996. Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science 62, 134-7. Shuldiner AR, Scott LA, Roth J, 1990. PCR-induced (ligase-free) subcloning: a rapid reliable method to subclone polymerase chain reaction (PCR) products. Nucleic Acids Res 18, 1920. Tee ES, 1992. Carotenoids and retinoids in human nutrition. Crit Rev Food Sci Nutr 31, 103-63. Tsuge K, Matsui K, Itaya M, 2003. One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res 31, e133. Ukibe K, Hashida K, Yoshida N, Takagi H, 2009. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75, 7205-11. Verwaal R, Wang J, Meijnen JP, et al., 2007. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73, 4342-50. Visser H, Van Ooyen AJ, Verdoes JC, 2003. Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4, 221-31. Walhout AJ, Temple GF, Brasch MA, et al., 2000. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328, 575-92. Yuan JP, Peng J, Yin K, Wang JH, 2011. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55, 150-65. Zhong YJ, Huang JC, Liu J, et al., 2011. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J Exp Bot 62, 3659-69. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T, 2008. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105, 18232-7.
摘要: 
In the post-genome era, synthetic biology is a new approach to design a new biological system or to re-design natural biological systems for new function. Carotenoids, including β-carotene, canthaxanthin and zeaxanthin, are antioxidants and the downstream product, astaxanthin, is the stronger one but the lower contestant. We propose to develop a 'cell factory' for producing carotenoids, via a synthetic biology tool, PGASO, that can simultaneously transform and regulatory express multiple gene in the yeast. In this proposal, engineering of the carotenogenic pathway will be achieved in a thermo- and toxin-tolerant yeast, Kluyveromyces marxianus KY3. The suitable Astaxanthin synthesis genes, including crtE, crtYB, crtI, tHMG1, crtS, crtR, bkt, and chyb, from suitable host, such as Xanthophyllomyces dendrorhous and green algae (Chlamydomonas reinhardtii, Chlorella zofingiensis, and Haematococcus pluvialis) were selected. We check the conformation of the engineered strain Cz30 via high performance liquid chromatography (HPLC) and it contains β-carotene and canthaxanthin in the red color cell. Compared to the wild type strain, the engineered strain showed higher ethanol tolerance and higher bio-ethanol productivity, in addition to producing carotenoids. The results suggested that the production of antioxidant carotenoids can improve toxin tolerance, damage recovering, and cell membrane maintenance via free radical removal. Furthermore, the strain could utilize glycerol, which is a common waste product from biodiesel industry, to improve the cost-effectiveness of carotenoids production. In conclusion, this system can serve as a biorefinery for both biofuel and value-added metabolites production

合成生物學是後基因體時代的新策略,可以重新設計自然界的生物系統來產生新的功能,透過合成生物學的概念建構一個細胞工廠,用以生產天然抗氧化劑類胡蘿蔔素。類胡蘿蔔素是提供生物抗氧化要素之一,番茄紅素、β-胡蘿蔔素、玉米黃質、角黃素等均為類胡蘿蔔素生物合成的中間產物,而蝦青素為其下游最終產物,其抗氧化能力最強但自然界含量卻很少。本實驗利用多基因單一步驟轉殖技術「PGASO」,將分別來自不同物種例如紅酵母「Xanthophyllomyces dendrorhous」和綠藻「Chlamydomonas reinhardtii, Chlorella zofingiensis 與 Haematococcus pluvialis」,挑選一些適合的基因包括crtE (GGPP synthase)、 crtYB (phytoene synthase/lycopene cyclase)、crtI (phytoene desaturase)、tHMG1 (修飾後 3-hydroxy-3-methylglutaryl–coenzyme A reductase)、bkt (β-carotene ketolase) 與chyb (β-carotene hydroxylase) 進行基因轉殖,以進入一株耐熱的酵母菌「Kluyveromyces marxianus KY3」之基因體中,且每個基因透過獨立的啟動子進行調控。研究初步結果,轉殖株 Cz30 (其 chyb 來自 C. zofingiensis) 細胞有明顯的呈橘紅色變化,進一步利用高壓液相層析儀 (HPLC) 分析探討內容物成分,確實有生產數種類胡蘿蔔素包括 β-胡蘿蔔素與角黃素等。實驗發現相關酵素作用溫度與關鍵基因之表現量會影響類胡蘿蔔素的含量及成份,並且可因而提升轉殖株之抗氧化能力以抵抗 UV、酒精等環境傷害。此外,轉殖株 Cz30 可以運用甘油當原料,來生產高價值的天然類胡蘿素,為具有應用價值的綠色生物製程之成功例子。
URI: http://hdl.handle.net/11455/92096
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生命科學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7100052216-1.pdf2.48 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.