Please use this identifier to cite or link to this item:
標題: 台灣西南海域深海底泥Methanoculleus及Methanosarcina之純化與特性分析
Isolation and Characterization of Methanoculleus and Methanosarcina from deep sea marine sediment offshore SW of Taiwan
作者: Chieh-Yin Weng
關鍵字: 甲烷太古生物;台灣西南海域;變形前緣區;甲烷水合物;Methanogen;gas hydrate;Taiwan;deformation front
引用: 林曉武。2008。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究(1/4)總論。中央地質調查所報告第97-29號,委辦計畫編號(97-5226903000-02-03)。 林曉武。2009。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學林曉武。2008。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究(1/4)總論。中央地質調查所報告第97-29號,委辦計畫編號(97-5226903000-02-03)。 林曉武。2009。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究(2/4)總論。中央地質調查所報告第98-27號,委辦計畫編號(98-5226904000-04-03)。 林曉武。2010。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究(3/4)總論。中央地質調查所報告第99-26號,委辦計畫編號(99-5226904000-04-03)。 林曉武。2011。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域自生性碳酸鹽及硫物種之變化與天然氣水合物賦存之關係(4/4)。中央地質調查所報告第100-25-C號,委辦計畫編號(100-5226904000-02-03)。 洪娟娟。2012。甲烷太古生物之相容質N-acetyl-β-lysine自體生合成基因以及酵素特性分析。國立中興大學生命科學所博士學位論文。 陳眉霏。2013。台灣西南海域甲烷水合物賦存區底泥甲烷太古生物之純化與特性分析。國立中興大學生命科學所碩士學位論文。 楊燦堯。2008。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域海水與沉積物之氣體化學組成經濟部(1/4)。中央地質調查所報告第97-29-A號,委辦計畫編號(97-5226903000-02-03)。 楊燦堯。2009。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域海水與沉積物之氣體化學組成經濟部(2/4)。中央地質調查所報告第98-27-A號,委辦計畫編號(98-5226904000-04-03)。 楊燦堯。2010。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域海水與沉積物之氣體化學組成經濟部(3/4)。中央地質調查所報告第99-26-A號,委辦計畫編號(99-5226904000-04-03)。 楊燦堯。2011。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域海水與沉積物之氣體化學組成經濟部(4/4)。中央地質調查所報告第100-25-A號,委辦計畫編號(100-5226904000-02-03)。 賴姝蓉。2011。高鹽甲烷太古生物之相容質甜菜鹼自體生合成酵素特性分析並探討其應用於模式生物阿拉伯芥與斑馬魚抗癌抗旱的可行性。國立中興大學生命科學研究所博士學位論文。 賴美津。2005。極端環境下的太古生物。科學發展393: 52-59. 賴美津。2008。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(1/4)。中央地質調查所報告第97-29-B號,委辦計畫編號(97-5226903000-04-03)。 賴美津。2009。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(2/4)。中央地質調查所報告第98-27-B號,委辦計畫編號(98-5226904000-04-03)。 賴美津。2010。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(3/4)。中央地質調查所報告第99-26-B號,委辦計畫編號(99-5226904000-04-03)。 賴美津。2011。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(4/4)。中央地質調查所報告第100-25-B號,委辦計畫編號(100-5226904000-02-03)。 鐘三雄、林殿順、王詠絢、劉家瑄、史菲利(Schnurle, P.)、林曉武、陳松春和陳柏淳。2008。高雄–屏東外海天然氣水合物科學鑽探計畫。經濟部中央地質調查所。 Albers, S. V. and B. H. Meyer. 2011. The archaeal cell envelope. Nature 9: 414-426. Antunes, A., M. Taborda, R. Huber, C. Moissl, M. F. Nobre and M. S. da Costa. 2008. Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deeo-sea, hypersaline anoxic basin of the Red Sea, and emended description if the genus Halorhabdus. Int. J. Syst. Evol. Microbiol. 58: 215-220. Appenzeller, T. 1991 Fire and ice under the deep-sea floor. Science 252: 1790-1792. Arrio, K. R. 2007 CARBON CYCLE: Marine manipulations. Nature 450: 491-492. Balch, W. E., G. E. Fox, C. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: revalutation of a unique biological group. Microbial. Rev. 43: 260-296. Banning, N., F. Brock, J. C. Fry, R. J. Parkes, E. R. C. Hornibrook and A. J. Weightman. 2005. Investigation of the methanogen population structure and activity in a brackish lake sediment. Evol. Microbiol. 7: 947-960. Bellack, A., H. Huber, R. Rachel, G. Wanner, and R. Wirth. 2011. Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell-cell contacts. Int. J. Syst. Evol. Microbiol. 61: 1239-1245. Biavati, B., M. Vasta, and J. G. Ferry. 1988. Isolation and characterization of 'Methanosophaera cuniculi' sp. nov. Appl. Environ. Microbiol. 54: 768-771. Bize, A., E. A. Karlsson, K. Ekefjard, T. E. F. Quax, M. Pina, M. C. Prevost, P. Forterre, O. Temaillon, R. Bernander, and D Prangishvili. 2009. A unique virus release mechanism in the Archaea. Proc. Natl. Acad. Sci. U. S. A. 106: 11306-11311. Bolhuis, H. and L. J. Stal. 2011. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene taq sequencing. ISME. 5: 1701-1712. Bonin, A. S. and D. R. Boone. 2006. The order Methanobacteriales. Prokaryotes 3: 231-243. Boone, D. R., I. M. Mathrani, M. Y. Liu, J. A. G. F. Menaia, R. A. Mah, and J. E. Boone. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Sys. Bact. 43: 430-437. Boone, D. R., W. B. Whitman, and P. Rouvier. 1993. Diversity and taxonomy of methanogens. p. 35–80. In J. G. Ferry (ed.), Methanogenesis. Chapman and Hall, New York, N.Y. Boone, D. R., W. B. Whitman, Y. Koga. 2001. Methanobacteriales, p. 213–235., In D. R. Boone, D. R., W. Castenholtz, G. M. Garrity (eds.) In Bergey's Manual of Systematic Bacteriology, 2nd edn. Springer-Verlag, New York, N. Y. Boone, D. R., W. B. Whitman, Y. Koga. 2001. Methanomicrobials, p. 246–267., In D. R. Boone, D. R., W. Castenholtz, G. M. Garrity (eds.), In Bergey's Manual of Systematic Bacteriology, 2nd edn. Springer-Verlag, New York, N. Y. Boone, D. R., W. B. Whitman, Y. Koga. 2001. Methanosarcinales, p. 268–294., In D. R. Boone, D. R., W. Castenholtz, G. M. Garrity (eds.), In Bergey's Manual of Systematic Bacteriology, 2nd edn. Springer-Verlag, New York, N. Y. Borowski, W. S., C. K. Paull, and W. Usser III. 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates. Mar. Geo. 159: 131-154. Bourry, C. B. Chazallon, J. L. Charlou, J. P. Donval, L. Ruffine, P. Henry, L. Geli, M. N. Cagatay, S. Lnan and M. Moreau. 2009. Free gas and gas hydrates from the sea of Maemaea, Turkey: chemical and structural characterization. Chemical Geology. 264: 197-206. Brochier, C., S. Gribaldo, Y. Zivanovic, F. Confalonieri and P. Forterre. Nanoarchaea: representatives of novel archaeal phylum or a fast-evolving euryarchaeal limeage related to Thermococcales? 2005. Genome Biol. 6: R42. Brochier-Armanet, C., B. Boussau, S. Gribaldo and P. Forterre. 2008. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6: 245-252. Charlou, J. L., J. P. Donval, T. Zitter, N.Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside. 2003. Evidence of methane venting and geochemistry of brines on mud volcanoes of eastern Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers. 50: 941-958. Chen, C. T. and H. C. Tseng. 2006. Abnormally high CH4 concentration in seawater at mid-depths on the continental slopes of the Northern South China Sea. Terr. Atmos. Ocean. Sci. 17: 961-979. Cheng, L. L. Qiu, X. Liu, W. D. Wang, Y. Deng, X. B. Yin, and H. Zhang. 2008. Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol. Lett. 285: 65-71. Cheng, L., T. L. Qiu, X. B. Yin, X. L. Wu, G. Q. Hu, Y. Deng, and H. Zhang. 2007. Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production eater, and proposal of Methermicoccaceae fam. Nov. Int. J. Syst. Evol. Microbiol. 57: 2964-2969. Chuang, P. C., T. F. Yang, S. Lin, H. F. Lee, T. F. Lan, W. L. Hong, C. S. Liu, J. C. Chen, and Y. Wang. 2006. Extremely high methane concentration in bottom water and cored sediments from offshore Southweastern Taiwan. 2006. Terr. Atmos. Ocean. Sci. 4: 903-920. Dang, H., X. W. Luan, R. Chen, X. Zhang, L. Guo and M. G. Klotz. 2010. Diversity abundance and distribution of amoA-encoding archaea in deeo-sea methane seep sediments of Okhotsk Sea. FEMS Microbiol. Ecol. 72: 370-385. Delong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. 89: 5685-5689. Dianou, D., T. Miyaki, S. Asakawa, H. Morii, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001 Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA-DNA hybridization among Methanoculleus species. Int. J. Syst. Evol. Microbiol. 51: 1663-1669. Dojka, M. A., P. Hugenholtz, S. K. Haack, and N. R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869-3877. Dridi, B., M. L. Fardeau, B. Ollivier, D. Raoult, and M. Drancourt. 2012. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62: 1902-1907. Dunfield, P. F., I. Tamas, K. C. Lee, X. C. Morgan, Ian R. McDonald and M. B. Stott. 2012. Electing a candidate: a speculative history of the bacterial phylum OP10. Environ. Microbiol. 14: 3069-3080. Elkins, J. G., M. Podar, D. E. Graham, K. S. Makarova, Y. Wolf, L. Ranau, B. P. Hedlund, C. Brochier-Armanet, V. Kunin, I. Anderson, A. Lapidus, E. Goltsman, K. Barry, E. V. Koonin, P. Hugenholtz, N. Kyrpides, G. Wanner, P. Richardson, M. Keller and K. O. Stetter. 2008. A korarchaeal genome reveals insights in to the evolution of the Archaea. PNAS. 105: 8102-8107. Ferguson, T. J. and R. A Mah. 1983. Isolation and characterization of a H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45: 265-274. Firtel, M., G. Southam, T. Mok, R. Harris, and T. J. Beveridge. 1995. Electron microscopy techniques for the Archaea. p. 123-139. In K. R. Sowers & H. T. Schreier (ed.), Archaea: a Laboratory Manual, vol. 2, Methanogens. Cold Spring Habor, NY: Cold Spring Harbor Laboratory. Franzmann, P. D., Y. Liu, D. L. Balkwill, H. C. Aldrich, E. C. DE Macario, and D. R. Boone. 1997. Methanogenium frigidum sp. nov., a psychrophilic, H,-Using methanogen from Ace Lake, Antarctica. Int. J. Syst. Bacteriol. 47: 1068-1072. Garcia, J. L., B. K. Patel, and B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6: 205-226. Garcia, J. L., B. Ollivier and W. B. Whitman. 2006. The order Methanomicrobiales. Prokaryotes. 3: 208-230. Giulio, M. D. 2007. Ther tree of life might be rooted in the branch leading to Nanoarchaeota. Gene. 401: 108-113. Harris, J. K., S. T. Kelley and N. R. Pace. 2004. New perspective on uncultured bacterial phylogenetic division OP11. Appl. Environ. Microbiol. 70: 845-849. Horz, H.-P. and G. Conrads. 2011. Methanogenic Archaea and oral infections – ways to unravel the black box. Oral Microl.Immunol. 3: 221-236. Huber, H. S. Burggraf, T. Mayer, I. Wyschkony, R. Rachel and K. O. Stetter. 2000. Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int. J. Syst. Evol. Micr. 50: 2093-2100. Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone Hot Spring. J. Bacterill. 180: 366-376. Hungate, R. E. 1969. A rolltube method for cultivation of strict anaerobes, p117-132. In J. R. Norris and D. W. Ribbons (ed.) Method in microbiology, vol 3B. Academic press Inc., New York, N. Y. Inagaki, F., T. Nunoura, S. Nakagawa, A. Teskse, M. Lever, A. Lauer, M. Suzuki, K. Takai, N. Delwiche, F. S. Colwell, K. H. Nealson, K. Horikoshi, S. D′Hondt, and B. B. Jorgensen. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. USA. 103: 2815-2820. Jamieson, R. E., J. L. Heywood, A. D., Rogers, D. S. M. Billett, D. A. Pearce. 2013. Bacterial biodiversity in deep-sea sediments from two regions of contrasting surface water productivity near the Crozet islands, Southern Ocean. Deep sea Res. I. 75: 67-77. Joseph, S. and D. W. Russell. 2001. Preparation and transformation of competent E. coli using calcium chloride, p. 1.117-1.118. In Molecular cloning: a laboratory manual, third edition. Cold Spring Harbor Laboratory press. Cold Spring Harbor, New York, N. Y. Kadnikov, V. V., A. V. Mardanov, A. V. Beletsky, O. V. Shubenkova, T. V. Pogodaeva, T. I. Zemskaya, N. V. Ravin, and K. G. Skryabin. 2012. Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiol. Ecol. 79: 348-358. Kendall, M. M. and D. R. Boone. 2006. The order Methanosarcinales. Prokaryotes 3: 244-256. Kendall, M. M., Y. Liu, M. Sieprawaska-Lupa, K. O. Stetter, W. B. Whitman, and D. R. Boone. 2006. Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediment. Int. J. Syst. Evol. Microbiol. 56: 1525-1529. Keswani, J. and W. B. Whitman. 2001. Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int. J. Syst. Evol. Microbiol. 51: 667-678. Knittel, K. and A. Boetius. 2009. Methane: progress with an unknown process. Annu. Rev. Microbiol. 63: 311–34. Knittel, K., T. Losekann, A. Boetius, R. Kort, and R. Amann. 2005. Diversity and distribution of methanotrophic archaea at cold seep. Appl. Environ. Microbiol. 71: 467-479. Kohler, P. R. A., and W. W. Metcalf. 2012 Genetic manipulation of Methanosarcina spp. Front. Microbio. Rev. 3: 1-9. Konig, H. 1995. Isolation and analysis of cell walls from methanogenic archaea. p. 315-328. In K. R. Sowers & H. T. Schreier (ed.), Archaea: a Laboratory Manual, vol. 2, Methanogens. Cold Spring Habor, NY: Cold Spring Harbor Laboratory Kormas, K. A., A. Meziti, A. Dahlmann, G. J. DE Lange, and V. Lykousis. 2008. Characterization of methanogenic and prokaryotic assemblages based on mcrA and 16S rRNA gene diversity in sediments of the Kazan mud volcano (Mediterranean Sea). Geobiology 6: 450-460. Kurr, M., R. Huber, H. Konig, H. W. Jannasch, H. Fricke, A. Trineone, J. K. Kristjansson, and K. O. Strtter. 1991. Methanopyrus kandleri, gen. and sp. nov. represent a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156: 239-247. Lai, M. C. and C. J. Shih. 2001. Characterization of Methanococcus voltaei strain P2F9701a, a new methanogen isolated from estuarine environment. Current Microbiology. 242: 432-437. Lai, M. C. and S. C. Chen. 2001. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fishpond. Int. J. Syst. Evol. Microbiol. 51:1873-1880. Lai, M. C., and R. P. Gunsalus. 1992. Glycine betaine and Potassium are the major compatible solutes in the extreme halophilic methanogens. Journal of Bacteriology. 174: 7474-7477. Lai, M. C., and S. C. Chen. 2001. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int. J. Syst. Evol. Microbiol. 51: 1873-1880. Lai, M. C., C. C. Lin, P. H. Yu, Y. F. Huang and S. C. Chen. 2004. Methanocalculus chungshingensis sp. nov., isolated from an estuary and a marine fishpond in Taiwan. Int. J. Syst. Evol. Microbiol. 54:183-189. Lai, M. C., C. M. Shu, M. S. Chiou, T. Y. Hong, M. J. Chuang and J. J. Hua. 2000a. Characterization of Methanosarcina mazei N2M9705 isolate from an aquaculture fishpond. Current Microbiology. 39: 79-84. Lai, M. C., C. M. Shu, S. C. Chen, L. J. Lai, M. S. Chiou and J. J. Hua. 2000b. Methanosarcina mazei strain O1M9704, methanogen with novel tubule isolated from estuarine environment. Current Microbiology 41:15-20. Lai, M. C., D. R. Yang, and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl. Envi. Microbiol. 65: 828-833. Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts, and R. P. Gunsalus. 1991. Distrubution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173: 5352-5358. Lai, M. C., S. C. Chen, C. M. Shu, M. S. Chiou, C. C. Wang, M. J. Chuang, T. Y. Hong, C. C. Liu, L. J. Lai, and J. J. Hua. 2002. Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int. J. Syst. Evol. Microbiol. 52: 1799-1806. Lazar, C. S., R. J. Parkes, B. A. Cragg, S. L′Haridon, and L. Toffin. 2012. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ. Microbiol. 13: 2078-2091. Lee, K. C., C. W. Herbold, P. F. Dunfield, X. C. Morgan, I. R. McDonald, M. B. Stott. 2013. Phylogentic delineation of the novel phylim Armatimonadetes (former Candidate Division OP10) and definition of two novel candidate divisions. Appl. Envi. Microbiol. 79: 2484-2487. Lee, O. O., Y. Wang, J. Yang, F. F. Lafi, A. Al-Suwailem and P. Y. Qian. 2011. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME. 5: 650-664. Lin, L. H., L. W. Wu, T. W. Cheng, W. X. Tu, J. R. Lin, T F. Yang, P. C. Chen, Y. Wang and P. L. Wang. 2014. Distributions and assemblages of microbial communities along a sediment core retrieved from a potential hydrate-bearing region offshore southwestern Taiwan. Journal of Asian Earth Sciences. j.jseaes.2014.02.014. Lipp, J. S., Y. Morono, F. Inagaki, and K. U. Hinrichs. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediment. Nature 454: 991-994. Liu, C. S., I. L. Huang, and L. S. Teng. 1997. Structural features off southwestern Taiwan. Mar. Geo. 137: 305-319. Liu, C. S., P. Schnurle, Y. Wang, S. H. Chung, S. C. Cheng, and T. H. Hsiuan. 2006. Distribution and characters of gas hydrate offshore of Southwestern Taiwan. Terr. Atmos. Ocean. Sci. 4: 615-644. Liu, Y. 2006. Methanomicrobiales, p. 584-593., In K. N. Timmis (eds.), Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag Berlin Heidelberg. Liu, Y. 2010. Methanomicrobial. p. 583-589. In K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology. DOI: 10.1007/978-3-540-77587-4_45 Springer -Verlag, New York, N. Y. Lloyd, K. G. L. Schreiber, D. G. Petersen, K. U Kjeldsen, M. A. Lever, A. D. Steen, R. Stepanauskas, M. Richter, A. Kleindienst, S. Lenk, A. Schramm and B. B. Jorgensen. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature Letter. 496: 215-220. Lloyd, K. G., L. Lapham and A. Teske. 2006. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico Sediments. Appl. Environ. Microbiol. 72: 7218-7230. Lu, Z. and Y. Lu. 2012. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil. PLos ONE 7: e35279. Maestrojuan, G. M. D. R. Boone, L. Xun, R. A. Mah, and L. Zhang. 1990. Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the genus Methanoculleus gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of new strains of Methanoculleus bourgense and Methanoculleus marisnigri. 40: 117-122. Mah, R. A. and D. A. Kuhn. 1984. Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Int. J. Syst. Bacteriol. 34: 263-265. Meints, R. H., Lee, K., Burbank, D. E. and Van Etten, J. L. 1984. Infection of a chlorella-like alga with the virus, PBCV-1: ultrastructure studies. Virology. 138: 341-346. Mesbah, M., U. Premachandran, and W. B. Whitman. 1989. Precise measurement og the G+C content of deoxyribonucleic acid by high-preformance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. Mikucki, J. A., Y. Liu, M. Delwiche, F. S. Colwell, and D.R. Bonne. 2003. Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description oh Methanoculleus submarinus sp. nov. Appl. Environ. Microbiol. 69: 3311-3316. Ollivier, B. M., R. A. Mah, J. L. Garcia, and D. R. Boone. 1986. Isolation and characterization of Methanogenium bourgense sp. nov. Int. J. Syst. Bacteriol. 36: 297-301. Ollivier, B. O., P. Caumette, J. Garcia, and R. A. Mah. 1994. Anaerobic bacteria from hypersaline enviroments. Microbiol. Rev. 58: 27-38. Omoregie, E. O., H. Niemann, V. Mastalerz, G. J. de Lange, A. Stadnitskaia, J. Mascle, J. P. Foucher, A. Boetius. 2009. Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea. Mar. Geol. 261: 114-127. Orcutt, B. N., J. B. Sylvan, N. J. Knab, and K. J. Edwards. 2011. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75: 361-422. Orphan, V. J., C. H. House, K. U. Hinrichs, K. D. McKeegan, and E. F. DeLong. 2001. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293: 484-487. Pachiadaki, M. G., A. Kallionaki, A. Dahlmann, G. J. de Lange, and K. A. Kormas. 2011. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb. Ecol. 62: 655-668. Pachiadaki, M. G., V. Lykousis, E. G. Stefanou, and K. A. Kormas. 2010. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol. Ecol. 72: 429-444. Parkes, R. J., B. A. Cragg, and P. Wellsbury. 2000. Recent studies on bacterial population and processes in subseafloor sediments: a review. Hydrogeology Journal. 8: 11-28. Paul, K., J. O. Nonoh, L. Mikulski, and A. Brune. 2012. 〃Methanoplasmatales,〃 Thermoplasmatales-related Archaea on termite guts and other environments, are seventh order of methanogens. Appl. Environ. Microbiol. 78: 8245-8253. Pimentel, M., R. P. Gunsalus, S. S. C. Rao, and H. Zhang. 2012. Methanogens in human health and disease. Am. J. Gastroenterol. Suppl. 1: 28-33. Ragjoebarsing, A. A., A. Pol, K. T. van de Pas-Schoonen, A. J. P. Smolders, K. F. Ettwig, W I. C. Rijpstra, S. Schouten, J. S. S. Damste, F. J. M. Op den Camp, M. S. M. Jetten and M. Strous. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature Letter. 440: 918-921. Reed, D. W., Y. Fujita, M. E. Delwiche, D. B. Blackweder, P. P. Sheridan, T. Uchida and F. S. Colwell. 2002. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol. 68: 3759-3770. Reysenbach, A. L. 2001. Thermoplasmta, p. 335-340., In D. R. Boone, D. R., W. Castenholtz, G. M. Garrity (eds.), In Bergey's Manual of Systematic Bacteriology, 2nd edn. Springer-Verlag, New York, N. Y. Ritt, B., J. Sarrazin, J. C. Caprais, P. Noel, O. Gauthier, C. Pierre, P. Henry and D. Desbruyeres. 2010. First insights into the structure and environmental setting of cold-seep communities in the Marmara Sea. Deep-Sea Research I. 57: 1120-1136. Rivard, C. J. and P. H. Smith. 1982. Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov. Int. J. Syst. Bacteriol. 32: 430-436. Rochelle, P. A., B. A. Cragg, J. C. Fry, R. J. Parkes and A. J. Weightman. 1994. Effect of sample handling on estimation of bacterial diversity in marine sediment by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol. 15: 215-225. Romesser, J. A., R. S. Wolfe, F. Mayer, E. Spiess, and A. Walther-Mauruschat. 1979. Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch. Microbiol. 121: 147-153. Sakai, S., H. Imachi, S. Hanada, A. Ohashi, H. Harada, and Y. Kamagata. 2008. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov. Int. J. Syst. Evol. Microbiol. 58: 929-936. Sakai, S., R. Conrad, W. Liesack, and H. Imachi. 2010. Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen isolated from rice field soil. Int. J. Syst. Evol. Microbiol. 60: 2918-2923. Schubert, C. J., F. Vazquez, T. Losekann-Behrens, K. Knittel, M. Tonolla, and A. Boetius. 2011. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS. Microbiol. Ecol. 76: 26-38. Sievert, S. M., R. P. Kiene and H. N. Schulz-Vogt. 2007. The sulfur cycle. Oceanography. 20: 117-123. Stetter, K. O., M. Thomm, J. Winter, G. Wildgruber, H. Huber, W. Zillig, D. Janecovic, H. Konig, P. Palm and S. Wunder. 1981. Methanthermus fervidus, sp. nov. a novel extremely thermophilic methanogen isolated from an icelandic hot spring. Zentbl. Bakteriol. Mikrobiol. Hyg. C2: 166–178. Takai, K. and K. Horikoshi. 1999. Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics. 152: 1285-1297. Takai, K. and K. Nakamura. 2011. Archaeal diversity and community development in deep-sea hydrothermal vent. Curr. Opin. Microbiol. 14: 282-291. Takai, K., A. Inoue, and K. Horikoshi. 2002. Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Wester Pacific deep-sea hydrothermal vent system. Int. J. Syst. Evol. Microbiol. 52: 1089-1095. Takai, K., K. H. Nealson, and K. Horiloshi. 2004. Methanotorris formicicus sp. nov., a novel extremely thermophlilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int. J. Syst. Evol. Microbiol. 54: 1095-1100. Tamaki, H., Y. Tanaka, H. Matsuzawa, M. Muranatsu, X. Y. Meng, S. Hanada, K. Mori and Y. Kamagata. 2011. Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. Nov., formally called the candidate phylum OP10. Int. J. Syst. Evol. Microbiol. 61:1442-1447. Tavormina, P. L., W. Ussler III, S. B. Joye, B. K. Harrison and V. J. Orphan. 2010. Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME. 4: 700-710. Teske, A., K. U. Hinrichs, V. Edgcomb, A. D. V. Gomez, D. Kysela, S. P. Sylva, M. L. Sogin and H. W. Jannasch. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68: 1994-2007. Thauer, R. K. 1988. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144: 2377-2406. Thauer, R. K., A. K. Kaster, H. Seedorf, W. Bukel, and R. Hedderich. 2008. Methanogenic archaea: ecologically relevant differences in energy. Nature 6: 579-591. Tian, J., Y. Wang, and X. Dong. 2010. Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int. J. Syst. Evol. Microbiol. 60: 2165-2169. Touzel, J. P. and G. Albagnac. 1983. Isolation and characterization of Methanococcus mazei strain MC3. FEMS Microbiol. Letters. 16: 241-245. Utsumi, M., S. E. Belova, G. M. King, and H. Uchiyama. 2003. Phylogentic comparison of methanogen diversity in different wetland soils. J. Gen. Appl. Microbiol. 49: 75-83. Valentline D. L. and W. S. Reeburgh. 2000. New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2: 477-484. Vetriani, C., H. W. Jannasch, B. J. MacGregor, D. A. Stahl and A. L. Reysenbach. 1999. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediment. Appl. Environ. Microbial. 65: 4375-4384. Vigneron, A., P. Cruaud, P. Pignet, J. C. Caprais, N. Gayet, M. A. Cambon-Bonavita, A. Godfroy and L. Tofiin. 2013. Bacterial communities and syntrophic associations involved in anaerobic oxidation of methane process of the Sonora Margin cold seeps, Guaymas Basin. Environ. Microbiol. doi:10.1111/ 1462-2920.12324. Wang, C. Y., C. H. Chang and H. Y. Yen. 2000. An tnterpretation of the 1999 Chi-Chi earthquake in Taiwan based in the thin-skinned thrust model. Terr. Atmos. Ocean. Sci. 11: 609-630. Wang, F. P., Y. Zhang., Y. Chen, Y. He, J. Oi, K. U. Hinrichs, X. X. Zhang, X. Xiao and N. Boon. 2013. Methanotrophic archaea possessing diverging methane- oxidizing and electron- transporting pathways. ISME. 8: 1069-1078. Wang, P. L., L. H. Lin, H. T. Yu, T. W. Cheng, S. R. Song, L. W. Kuo, E. C. Yeh, W. Lin and C. Y. Wang. 2007. Associated with deep sedimentary rocks from Taiwan Chelungpu Drilling Project cores. Terr. Atmos. Ocean. Sci. 18: 395-412. Whitman, W. B., D. R. Boone, Y. Koga. 2001. Methanococcales, p. 236-246., In D. R. Boone, D. R., W. Castenholtz, G. M. Garrity (eds.), In Bergey's Manual of Systematic Bacteriology, 2nd edn. Springer-Verlag, New York, N. Y. Woese, C. R., O. Kandler and M. L. Wheelis. 1990. Toward a natural system of organisums: proposal for the domain archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. U.S.A. 87: 4576-4579. Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886. Wu, S. Y. and M. C. Lai. 2011. Methanogenic archaea isolated from the Taiwan Chelungpu fault. Appl. Envi. Microbiol. 77:830-838. Wu, S. Y., M. C. Lai and S. C. Chen. 2005. Methanofollis formosanus., isolated from a fish pond. Int. J. Syst. Evol. Microbiol. 55: 837-842. Yanagawa, K., M. Kouduka, Y. Nakamura, A. Hachikubo, H. Tomaru, Y. Suzuki. 2013. Distinct microbial communities thriving in gas hydrate-associated sediments from the eastern Japan Sea. Journal of Asian Earth Sciences. j.jseaes.2013.10.019 Yanagawa, K., M. Sunamura, M. A. Lever, Y. Morono, A. Hiruta, O. Ishizaki, R. Matsumoto, T. Urabe and F. Inagaki. 2011. Niche separation of methanotrophic archara (ANME-1 and -2) in methane-seep sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiology Journal. 28: 118-129. Yang, T. F., P. C. Chuang, S. Lin, J. C. Chen, Y. Wang, and S. H. Chung. 2006. Methane venting in gas hydrate potential area offshore of SW Taiwan: evidence of gas analysis of water column samples. Terr. Atmos. Ocean. Sci. 4: 933-950. Youssef, N. H., K. N. Ashlock-Savage and M. S. Elshahed. 2011. Extremely halophilic archeae (order Halobacteriales) in multiple saline sediment habitats. Appl. Envi. Microbiol. 78: 1332-1344. Zehr, J. P. and B. B. Ward. 2002. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl. Envi. Microbiol. 68: 1015-1024. Zellner, G., P. Messner, J. Winter, and E. Stackebrandt. 1988. Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int. J. Syst. Bacteriol. 48: 111-1117.
Taiwan is situated on the boundary separating the Eurasian plate to the west from the Philippine Sea Plate to the east. There were complex landforms from SW of Taiwan, such as ridges, mud volcanos, cold seeps and gas hydrate bearing regions. The isotopic data from Prof. Tsan-Yao Yang's lab was suggested that most of the methane produced in Taiwan methane hydrate potential area is biogenic origin. To explore the methanogens at methane seeps or hydrate habitats, sediment samples obtained from piston core at Tainan Ridge, Good Weather Ridge, 96 Mud Volcano and Deformation Front by ORI (Ocean Reasearch I) cruises were enriched anaerobically. After anaerobic enrichment and serial sub-transfer, Methanoculleus sp. S3Fa from 96 Mud Volcano Groups was purified and characterized by MS Mei-Fei Chen. The 16S rRNA sequence of strain S3Fa showed 99% similarity with deep sea gas hydrate isolate Methanoculleus submarinus. Similar isolation methods were used in this study, three strains CYW1, CYW2 and CYW3, were purified from Deformation Front, Tainan Ridge and Good Weather Ridge, respectively. The 16S rRNA sequence of three strains showed 99% similarity with Methanosarcina mazei Go1. The whole-cell protein profile of strain CYW1, CYW2 and CYW3 are identical with M. mazei N2M9705. The irregular cocci cells of Methanoclleus sp. CYW4 was isolated from Defromation Front and showed 96-97% similarity with genus Methanoculleus. Strain CYW4 used H2 plus CO2 or formate as catabolic substrates. The optimum growth condition was 37°C, pH 8.02 and 0.08 M NaCl. The result showed that strain CYW4 was the novel new species and might be the new clade in genus Methanoculleus. It is expected that these methanogens isolated from methane seep and gas hydrate potential bearing regions contribute to the methane hydrate formation.

台灣受到菲律賓海板塊及歐亞大陸板塊擠壓碰撞,造成廣大的增積岩體與台灣造山帶,使得台灣西南海域地形結構含有海脊、海底泥火山、冷泉、甲烷水合物賦存區等特殊地理環境。台大地質系楊燦堯教授實驗室以同位素研究顯示甲烷大多屬於生物性來源,應是甲烷太古生物甲烷化作用的產物。為了瞭解海洋底泥或甲烷水合物區的甲烷太古生物多樣性,藉由分離純化甲烷太古生物並與已知序列做比較分析,以探討台灣西南海域的甲烷太古生物相。2008-2011年間,以海洋研究船(Ocean Reasearch I, ORI)於台南海脊、好景海脊、96泥火山群及變形前緣區取出活塞岩心樣品。經過增殖培養及連續稀釋法後,陳眉霏碩士在96泥火山群分離純化出Methanoculleus sp. S3Fa,經由親緣關係比對,發現與天然氣水合物棲地純化的Methanoculleus submarinus有99%相似度。本研究以類似的增殖方法,分別自變形前緣區、台南海脊及好景海脊的活塞岩心底泥樣品純化出Methanosarcina mazei CYW1、CYW2及CYW3,經由親緣關係比對,菌株CYW1、CYW2及CYW3與Methanosarcina mazei Go1有99-100%相似度,能利用甲醇為碳源,且在全細胞蛋白質分析表現與M. mazei N2M9705非常相近。自變形前緣區的活塞岩心底泥樣品純化出Methanoculleus sp. CYW4,菌株CYW4與Methanoculleus屬有96-97%相似度,在生理特性分析方面,能利用甲酸及H2/CO2為甲烷生成之基質,最適生長溫度、鹽度及pH分別為37°C、0.08 M及pH 8.02,為新型的甲烷太古生物。M. mazei廣泛存在於各種環境中,可能在各種環境有良好的適應能力。由於處於特殊地理環境,菌株CYW4在Methanoculleus菌群當中獨立於另一分支,這些結果顯示已純化的甲烷菌株在台灣西南海域中對甲烷生成扮演著重要地位,進一步了解台灣西南海域海底底泥可能參與甲烷生成的甲烷太古生物,並可增加微生物資料庫,對於未來甲烷水合物的開採利用及甲烷資源的開發值得更進一步探討。
Rights: 同意授權瀏覽/列印電子全文服務,2017-06-27起公開。
Appears in Collections:生命科學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100052313-1.pdf3.07 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.