Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92137
標題: 抑制Akt可造成攝護腺癌細胞中雄性激素受體經由Cdk5的作用而活化
Akt Inhibition Increases Androgen Receptor Activity through Cdk5 Activation in Androgen-Dependent Prostate Cancer Cells
作者: Wei-Hsiang Kao
高暐翔
關鍵字: 攝護腺癌;雄性激素受體;Akt;β-Catenin;Egr1;p35;週期素依賴性激酶5;細胞生長;Prostate cancer;AR;Akt;β-Catenin;Egr1;p35;Cdk5;Cell growth
引用: 1. Riffenburgh RH & Amling CL (2003) Use of early PSA velocity to predict eventual abnormal PSA values in men at risk for prostate cancer. Prostate Cancer Prostatic Dis 6(1):39-44. 2. Swerdloff RS & Wang C (1993) Androgen deficiency and aging in men. West J Med 159(5):579-585. 3. Luu-The V, Belanger A, & Labrie F (2008) Androgen biosynthetic pathways in the human prostate. Best Pract Res Clin Endocrinol Metab 22(2):207-221. 4. Burd CJ, Morey LM, & Knudsen KE (2006) Androgen receptor corepressors and prostate cancer. Endocr Relat Cancer 13(4):979-994. 5. Feldman BJ & Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34-45. 6. Tan MH, Li J, Xu HE, Melcher K, & Yong EL (2015) Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 36(1):3-23. 7. Beitel LK, Alvarado C, Mokhtar S, Paliouras M, & Trifiro M (2013) Mechanisms mediating spinal and bulbar muscular atrophy: investigations into polyglutamine-expanded androgen receptor function and dysfunction. Front Neurol 4:53. 8. van der Steen T, Tindall DJ, & Huang H (2013) Posttranslational modification of the androgen receptor in prostate cancer. Int J Mol Sci 14(7):14833-14859. 9. Chen S, Gulla S, Cai C, & Balk SP (2012) Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 287(11):8571-8583. 10. Chen S, Xu Y, Yuan X, Bubley GJ, & Balk SP (2006) Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci U S A 103(43):15969-15974. 11. La Montagna R, et al. (2012) Androgen receptor serine 81 mediates Pin1 interaction and activity. Cell Cycle 11(18):3415-3420. 12. Gordon V, et al. (2010) CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 24(12):2267-2280. 13. Hsu FN, et al. (2011) Regulation of androgen receptor and prostate cancer growth by cyclin-dependent kinase 5. J Biol Chem 286(38):33141-33149. 14. Huggins C (1967) Endocrine-induced regression of cancers. Cancer Res 27(11):1925-1930. 15. Zeliadt SB, et al. (2012) Biopsy follow-up of prostate-specific antigen tests. Am J Prev Med 42(1):37-43. 16. Unni E, et al. (2004) Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 64(19):7156-7168. 17. Sun M, et al. (2003) Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85alpha, androgen receptor, and Src. J Biol Chem 278(44):42992-43000. 18. Peterziel H, et al. (1999) Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18(46):6322-6329. 19. Koivisto P, et al. (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57(2):314-319. 20. Montgomery RB, et al. (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68(11):4447-4454. 21. Guo Z, et al. (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69(6):2305-2313. 22. Sharifi N (2013) Mechanisms of androgen receptor activation in castration-resistant prostate cancer. Endocrinology 154(11):4010-4017. 23. Culig Z, et al. (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54(20):5474-5478. 24. Buchanan G, et al. (2001) Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 7(5):1273-1281. 25. Taplin ME, et al. (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59(11):2511-2515. 26. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, & Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464(7286):302-305. 27. Veldscholte J, et al. (1990) Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim Biophys Acta 1052(1):187-194. 28. Culig Z, Steiner H, Bartsch G, & Hobisch A (2005) Mechanisms of endocrine therapy-responsive and -unresponsive prostate tumours. Endocr Relat Cancer 12(2):229-244. 29. Hers I, Vincent EE, & Tavare JM (2011) Akt signalling in health and disease. Cell Signal 23(10):1515-1527. 30. Cohen MM, Jr. (2013) The AKT genes and their roles in various disorders. Am J Med Genet A 161A(12):2931-2937. 31. Furth J (1935) Transmission of Myeloid Leukemia of Mice : Its Relation to Myeloma. J Exp Med 61(3):423-446. 32. Staal SP, Hartley JW, & Rowe WP (1977) Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci U S A 74(7):3065-3067. 33. Engelman JA, Luo J, & Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606-619. 34. Vivanco I & Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489-501. 35. She QB, et al. (2010) 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18(1):39-51. 36. Guertin DA & Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9-22. 37. Laplante M & Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274-293. 38. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729-734. 39. Liu P, Cheng H, Roberts TM, & Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627-644. 40. Foster FM, Traer CJ, Abraham SM, & Fry MJ (2003) The phosphoinositide (PI) 3-kinase family. J Cell Sci 116(Pt 15):3037-3040. 41. Foster JG, Blunt MD, Carter E, & Ward SG (2012) Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 64(4):1027-1054. 42. Thorpe LM, Yuzugullu H, & Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15(1):7-24. 43. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, & Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11(5):329-341. 44. Faivre S, Kroemer G, & Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5(8):671-688. 45. Li L, et al. (2005) The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis 8(2):108-118. 46. Edlind MP & Hsieh AC (2014) PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl 16(3):378-386. 47. McMenamin ME, et al. (1999) Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59(17):4291-4296. 48. Li J, et al. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943-1947. 49. Steck PA, et al. (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356-362. 50. Reiss K, et al. (2000) IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene 19(22):2687-2694. 51. Mitri Z, Constantine T, & O'Regan R (2012) The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemother Res Pract 2012:743193. 52. Hennessy BT, Smith DL, Ram PT, Lu Y, & Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988-1004. 53. Guma A, Martinez-Redondo V, Lopez-Soldado I, Canto C, & Zorzano A (2010) Emerging role of neuregulin as a modulator of muscle metabolism. Am J Physiol Endocrinol Metab 298(4):E742-750. 54. Jathal MK, Chen L, Mudryj M, & Ghosh PM (2011) Targeting ErbB3: the New RTK(id) on the Prostate Cancer Block. Immunol Endocr Metab Agents Med Chem 11(2):131-149. 55. Chen L, et al. (2011) Dual EGFR/HER2 inhibition sensitizes prostate cancer cells to androgen withdrawal by suppressing ErbB3. Clin Cancer Res 17(19):6218-6228. 56. Veeramani S, et al. (2005) Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr Relat Cancer 12(4):805-822. 57. Yang X, et al. (2006) Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene 25(24):3436-3444. 58. Li B, Lu W, & Chen Z (2014) Regulation of Androgen Receptor by E3 Ubiquitin Ligases: for More or Less. Receptors Clin Investig 1(5). 59. Wen Y, et al. (2000) HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 60(24):6841-6845. 60. Lin HK, et al. (2003) Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J Biol Chem 278(51):50902-50907. 61. Ciarlo M, et al. (2012) Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. Int J Cancer 131(3):582-590. 62. Paliouras M & Diamandis EP (2008) An AKT activity threshold regulates androgen-dependent and androgen-independent PSA expression in prostate cancer cell lines. Biol Chem 389(6):773-780. 63. Liu L & Dong X (2014) Complex impacts of PI3K/AKT inhibitors to androgen receptor gene expression in prostate cancer cells. PLoS One 9(10):e108780. 64. Dulinska-Litewka J, McCubrey JA, & Laidler P (2013) Increased Akt signaling resulting from the loss of androgen responsiveness in prostate cancer. Curr Med Chem 20(1):144-157. 65. Cohen MB & Rokhlin OW (2009) Mechanisms of prostate cancer cell survival after inhibition of AR expression. J Cell Biochem 106(3):363-371. 66. Wu Y, et al. (2010) Androgen receptor-mTOR crosstalk is regulated by testosterone availability: implication for prostate cancer cell survival. Anticancer Res 30(10):3895-3901. 67. Carver BS, et al. (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19(5):575-586. 68. Cai C, et al. (2009) Androgen receptor expression in prostate cancer cells is suppressed by activation of epidermal growth factor receptor and ErbB2. Cancer Res 69(12):5202-5209. 69. Zhang Y, et al. (2002) Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1. Oncogene 21(36):5609-5618. 70. Zhang Y & Hamburger AW (2005) Specificity and heregulin regulation of Ebp1 (ErbB3 binding protein 1) mediated repression of androgen receptor signalling. Br J Cancer 92(1):140-146. 71. Sithanandam G & Anderson LM (2008) The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 15(7):413-448. 72. Baek KH, et al. (2012) Correlation of AR, EGFR, and HER2 Expression Levels in Prostate Cancer: Immunohistochemical Analysis and Chromogenic In Situ Hybridization. Cancer Res Treat 44(1):50-56. 73. Mulholland DJ, et al. (2011) Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19(6):792-804. 74. Marques RB, et al. (2015) High Efficacy of Combination Therapy Using PI3K/AKT Inhibitors with Androgen Deprivation in Prostate Cancer Preclinical Models. Eur Urol 67(6):1177-1185. 75. Thomas C, et al. (2013) Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther 12(11):2342-2355. 76. Nakabayashi M, et al. (2012) Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer. BJU Int 110(11):1729-1735. 77. Asghar U, Witkiewicz AK, Turner NC, & Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14(2):130-146. 78. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122. 79. Lin H, Chen MC, & Ku CT (2009) Cyclin-dependent kinase 5 regulates steroidogenic acute regulatory protein and androgen production in mouse Leydig cells. Endocrinology 150(1):396-403. 80. Dhavan R & Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2(10):749-759. 81. Shukla V, Skuntz S, & Pant HC (2012) Deregulated Cdk5 activity is involved in inducing Alzheimer's disease. Arch Med Res 43(8):655-662. 82. Su SC & Tsai LH (2011) Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol 27:465-491. 83. Zhou J, et al. (2015) The roles of Cdk5-mediated subcellular localization of FOXO1 in neuronal death. J Neurosci 35(6):2624-2635. 84. Cao L, et al. (2015) Cyclin-dependent kinase 5 decreases in gastric cancer and its nuclear accumulation suppresses gastric tumorigenesis. Clin Cancer Res 21(6):1419-1428. 85. Pozo K, et al. (2013) The role of Cdk5 in neuroendocrine thyroid cancer. Cancer Cell 24(4):499-511. 86. Chen MC, Hsu SL, Lin H, & Yang TY (2014) Retinoic acid and cancer treatment. Biomedicine (Taipei) 4:22. 87. Liang Q, et al. (2013) CDK5 is essential for TGF-beta1-induced epithelial-mesenchymal transition and breast cancer progression. Sci Rep 3:2932. 88. Liu JL, et al. (2011) Expression of CDK5/p35 in resected patients with non-small cell lung cancer: relation to prognosis. Med Oncol 28(3):673-678. 89. Tripathi BK, et al. (2014) CDK5 is a major regulator of the tumor suppressor DLC1. J Cell Biol 207(5):627-642. 90. Demelash A, et al. (2012) Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway. Mol Biol Cell 23(15):2856-2866. 91. Lin H, Juang JL, & Wang PS (2004) Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis. J Biol Chem 279(28):29302-29307. 92. Lin H, Chen MC, Chiu CY, Song YM, & Lin SY (2007) Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol Chem 282(5):2776-2784. 93. Kuo HS, et al. (2009) The role of Cdk5 in retinoic acid-induced apoptosis of cervical cancer cell line. Chin J Physiol 52(1):23-30. 94. Chen MC, et al. (2012) Retinoic Acid Induces Apoptosis of Prostate Cancer DU145 Cells through Cdk5 Overactivation. Evid Based Complement Alternat Med 2012:580736. 95. Moncini S, et al. (2007) The 3' untranslated region of human Cyclin-Dependent Kinase 5 Regulatory subunit 1 contains regulatory elements affecting transcript stability. BMC Mol Biol 8:111. 96. Tsai LH, Delalle I, Caviness VS, Jr., Chae T, & Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419-423. 97. Zhang L, Liu W, Szumlinski KK, & Lew J (2012) p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity. Proc Natl Acad Sci U S A 109(49):20041-20046. 98. Humbert S, Dhavan R, & Tsai L (2000) p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 113 ( Pt 6):975-983. 99. Amin ND, Albers W, & Pant HC (2002) Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35. J Neurosci Res 67(3):354-362. 100. Ko J, et al. (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21(17):6758-6771. 101. Hallows JL, Chen K, DePinho RA, & Vincent I (2003) Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J Neurosci 23(33):10633-10644. 102. Wen Y, et al. (2008) Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 28(10):2624-2632. 103. Nikolic M, Dudek H, Kwon YT, Ramos YF, & Tsai LH (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 10(7):816-825. 104. Harada T, Morooka T, Ogawa S, & Nishida E (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol 3(5):453-459. 105. Darbinian-Sarkissian N, et al. (2006) Dysregulation of NGF-signaling and Egr-1 expression by Tat in neuronal cell culture. J Cell Physiol 208(3):506-515. 106. Shin SY, et al. (2006) Suppression of Egr-1 transcription through targeting of the serum response factor by oncogenic H-Ras. EMBO J 25(5):1093-1103. 107. Pagel JI & Deindl E (2011) Early growth response 1--a transcription factor in the crossfire of signal transduction cascades. Indian J Biochem Biophys 48(4):226-235. 108. Yang SZ & Abdulkadir SA (2003) Early growth response gene 1 modulates androgen receptor signaling in prostate carcinoma cells. J Biol Chem 278(41):39906-39911. 109. Saito TH, Uda S, Tsuchiya T, Ozaki Y, & Kuroda S (2013) Temporal decoding of MAP kinase and CREB phosphorylation by selective immediate early gene expression. PLoS One 8(3):e57037. 110. Gregg J & Fraizer G (2011) Transcriptional Regulation of EGR1 by EGF and the ERK Signaling Pathway in Prostate Cancer Cells. Genes Cancer 2(9):900-909. 111. Baron V, Adamson ED, Calogero A, Ragona G, & Mercola D (2006) The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther 13(2):115-124. 112. Chen F, Wang Q, Wang X, & Studzinski GP (2004) Up-regulation of Egr1 by 1,25-dihydroxyvitamin D3 contributes to increased expression of p35 activator of cyclin-dependent kinase 5 and consequent onset of the terminal phase of HL60 cell differentiation. Cancer Res 64(15):5425-5433. 113. Lee JH & Kim KT (2004) Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J Neurochem 91(3):634-647. 114. Kang HS, et al. (2013) Early growth response protein 1 upregulation and nuclear translocation by 2'-benzoyloxycinnamaldehyde induces prostate cancer cell death. Cancer Lett 329(2):217-227. 115. Sarker KP & Lee KY (2004) L6 myoblast differentiation is modulated by Cdk5 via the PI3K-AKT-p70S6K signaling pathway. Oncogene 23(36):6064-6070. 116. Nayeem N, et al. (2007) Hyperphosphorylation of tau and neurofilaments and activation of CDK5 and ERK1/2 in PTEN-deficient cerebella. Mol Cell Neurosci 34(3):400-408. 117. Daval M, Gurlo T, Costes S, Huang CJ, & Butler PC (2011) Cyclin-dependent kinase 5 promotes pancreatic beta-cell survival via Fak-Akt signaling pathways. Diabetes 60(4):1186-1197. 118. Bogush A, et al. (2007) AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro. J Biol Chem 282(10):7352-7359. 119. Vazquez de la Torre A, et al. (2011) Study of the pathways involved in apoptosis induced by PI3K inhibition in cerebellar granule neurons. Neurochem Int 59(2):159-167. 120. Hung KS, et al. (2007) Gene transfer of insulin-like growth factor-I providing neuroprotection after spinal cord injury in rats. J Neurosurg Spine 6(1):35-46. 121. Lau MT, Klausen C, & Leung PC (2011) E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via beta-catenin-Egr1-mediated PTEN expression. Oncogene 30(24):2753-2766. 122. Jope RS, Yuskaitis CJ, & Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32(4-5):577-595. 123. Embi N, Rylatt DB, & Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107(2):519-527. 124. Cohen P & Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2(10):769-776. 125. Cross DA, Alessi DR, Cohen P, Andjelkovich M, & Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785-789. 126. Frame S, Cohen P, & Biondi RM (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7(6):1321-1327. 127. Goc A, et al. (2014) Targeting Src-mediated Tyr216 phosphorylation and activation of GSK-3 in prostate cancer cells inhibit prostate cancer progression in vitro and in vivo. Oncotarget 5(3):775-787. 128. Li R, et al. (2009) Cytoplasmic accumulation of glycogen synthase kinase-3beta is associated with aggressive clinicopathological features in human prostate cancer. Anticancer Res 29(6):2077-2081. 129. Darrington RS, et al. (2012) Distinct expression and activity of GSK-3alpha and GSK-3beta in prostate cancer. Int J Cancer 131(6):E872-883. 130. Hoeflich KP, et al. (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406(6791):86-90. 131. Kotliarova S, et al. (2008) Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 68(16):6643-6651. 132. Mamaghani S, et al. (2012) Glycogen synthase kinase-3 inhibition sensitizes pancreatic cancer cells to TRAIL-induced apoptosis. PLoS One 7(7):e41102. 133. Bijur GN & Jope RS (2000) Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem 75(6):2401-2408. 134. Ikeda S, et al. (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 17(5):1371-1384. 135. Hart MJ, de los Santos R, Albert IN, Rubinfeld B, & Polakis P (1998) Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol 8(10):573-581. 136. Hur EM & Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11(8):539-551. 137. Conacci-Sorrell M, Zhurinsky J, & Ben-Ze'ev A (2002) The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109(8):987-991. 138. Kypta RM & Waxman J (2012) Wnt/beta-catenin signalling in prostate cancer. Nat Rev Urol 9(8):418-428. 139. Truica CI, Byers S, & Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60(17):4709-4713. 140. Chesire DR, Ewing CM, Gage WR, & Isaacs WB (2002) In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis. Oncogene 21(17):2679-2694. 141. Chen G, et al. (2004) Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101(6):1345-1356. 142. Kim M, et al. (2015) Prostate-specific antigen kinetic profiles during androgen deprivation therapy as prognostic factors in castration-resistant prostate cancer. Urol Oncol. 143. D'Amico AV, Chen MH, Roehl KA, & Catalona WJ (2004) Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 351(2):125-135. 144. Araki S, et al. (2007) Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res 67(14):6854-6862. 145. Lee SO, et al. (2008) Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate 68(1):85-91. 146. Miyamoto T, Okano S, & Kasai N (2009) Irreversible thermoinactivation of ribonuclease-A by soft-hydrothermal processing. Biotechnol Prog 25(6):1678-1685. 147. Harder J & Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277(48):46779-46784. 148. Carey AM, et al. (2007) Ras-MEK-ERK signaling cascade regulates androgen receptor element-inducible gene transcription and DNA synthesis in prostate cancer cells. Int J Cancer 121(3):520-527. 149. Chen MC, et al. (2010) Involvement of cAMP in nerve growth factor-triggered p35/Cdk5 activation and differentiation in PC12 cells. Am J Physiol Cell Physiol 299(2):C516-527. 150. El Sheikh SS, Domin J, Abel P, Stamp G, & Lalani el N (2004) Phosphorylation of both EGFR and ErbB2 is a reliable predictor of prostate cancer cell proliferation in response to EGF. Neoplasia 6(6):846-853. 151. Jiang X, Chen S, Asara JM, & Balk SP (2010) Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits. J Biol Chem 285(20):14980-14989. 152. Yang CC, et al. (2003) Bcl-xL mediates a survival mechanism independent of the phosphoinositide 3-kinase/Akt pathway in prostate cancer cells. J Biol Chem 278(28):25872-25878. 153. Carson JP, Kulik G, & Weber MJ (1999) Antiapoptotic signaling in LNCaP prostate cancer cells: a survival signaling pathway independent of phosphatidylinositol 3'-kinase and Akt/protein kinase B. Cancer Res 59(7):1449-1453. 154. Trivigno D, Bornes L, Huber SM, & Rudner J (2013) Regulation of protein translation initiation in response to ionizing radiation. Radiat Oncol 8:35. 155. Leelawat K, Narong S, Udomchaiprasertkul W, Leelawat S, & Tungpradubkul S (2009) Inhibition of PI3K increases oxaliplatin sensitivity in cholangiocarcinoma cells. Cancer Cell Int 9:3. 156. Tong Y, et al. (2014) PI3K inhibitor LY294002 inhibits activation of the Akt/mTOR pathway induced by an oncolytic adenovirus expressing TRAIL and sensitizes multiple myeloma cells to the oncolytic virus. Oncol Rep 31(4):1581-1588. 157. Park SW, et al. (2014) Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons. Int J Neuropsychopharmacol 17(11):1831-1846. 158. Vlahos CJ, Matter WF, Hui KY, & Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269(7):5241-5248. 159. Gharbi SI, et al. (2007) Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 404(1):15-21. 160. Wu X, et al. (2004) Insulin promotes rat retinal neuronal cell survival in a p70S6K-dependent manner. J Biol Chem 279(10):9167-9175. 161. Lin HP, et al. (2013) Difference in protein expression profile and chemotherapy drugs response of different progression stages of LNCaP sublines and other human prostate cancer cells. PLoS One 8(12):e82625. 162. Gleave M, et al. (1999) Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin Cancer Res 5(10):2891-2898. 163. Muller RL, et al. (2012) Serum testosterone and dihydrotestosterone and prostate cancer risk in the placebo arm of the Reduction by Dutasteride of Prostate Cancer Events trial. Eur Urol 62(5):757-764. 164. Berns EM, de Boer W, & Mulder E (1986) Androgen-dependent growth regulation of and release of specific protein(s) by the androgen receptor containing human prostate tumor cell line LNCaP. Prostate 9(3):247-259. 165. Meijer L, et al. (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243(1-2):527-536. 166. Schneider-Poetsch T, et al. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6(3):209-217. 167. Furr BJ (1996) The development of Casodex (bicalutamide): preclinical studies. Eur Urol 29 Suppl 2:83-95. 168. Gavilan E, Sanchez-Aguayo I, Daza P, & Ruano D (2013) GSK-3beta signaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition. Cell Death Dis 4:e572. 169. Lee DH & Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8(10):397-403. 170. Lecker SH, Goldberg AL, & Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17(7):1807-1819. 171. Liu Y, et al. (2005) Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer. Cancer Res 65(8):3404-3409. 172. Liu G, et al. (2013) Eastern Cooperative Oncology Group Phase II Trial of lapatinib in men with biochemically relapsed, androgen dependent prostate cancer. Urol Oncol 31(2):211-218. 173. Shah K & Lahiri DK (2014) Cdk5 activity in the brain - multiple paths of regulation. J Cell Sci 127(Pt 11):2391-2400. 174. Asada A, Saito T, & Hisanaga S (2012) Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner. J Cell Sci 125(Pt 14):3421-3429. 175. Tilley WD, Wilson CM, Marcelli M, & McPhaul MJ (1990) Androgen receptor gene expression in human prostate carcinoma cell lines. Cancer Res 50(17):5382-5386. 176. Chlenski A, Nakashiro K, Ketels KV, Korovaitseva GI, & Oyasu R (2001) Androgen receptor expression in androgen-independent prostate cancer cell lines. Prostate 47(1):66-75. 177. Jeong JW, et al. (2012) Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol 40(5):1697-1704. 178. Shin DY, et al. (2013) Flavonoids from Orostachys japonicus A. Berger inhibit the invasion of LnCaP prostate carcinoma cells by inactivating Akt and modulating tight junctions. Int J Mol Sci 14(9):18407-18420. 179. Nouri M, et al. (2014) Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol 4:370. 180. Yuan TC, Veeramani S, & Lin MF (2007) Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 14(3):531-547. 181. Marcu M, Radu E, & Sajin M (2010) Neuroendocrine transdifferentiation of prostate carcinoma cells and its prognostic significance. Rom J Morphol Embryol 51(1):7-12. 182. Hsu FN, Yang MS, Lin E, Tseng CF, & Lin H (2011) The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab 300(5):E902-908. 183. Terry S & Beltran H (2014) The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol 4:60. 184. Zhao L, et al. (2015) LW-213 induces G2/M cell cycle arrest through AKT/GSK3beta/beta-catenin signaling pathway in human breast cancer cells. Mol Carcinog. 185. Bosch A, et al. (2015) PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med 7(283):283ra251. 186. Goodyear S & Sharma MC (2007) Roscovitine regulates invasive breast cancer cell (MDA-MB231) proliferation and survival through cell cycle regulatory protein cdk5. Exp Mol Pathol 82(1):25-32. 187. Deng X, et al. (2014) Combined phosphoproteomics and bioinformatics strategy in deciphering drug resistant related pathways in triple negative breast cancer. Int J Proteomics 2014:390781. 188. Fritsch C, et al. (2014) Characterization of the novel and specific PI3Kalpha inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther 13(5):1117-1129. 189. Furet P, et al. (2013) Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett 23(13):3741-3748.
摘要: 
Aberrant activation of PI3K/Akt signaling has been found in different human cancer cells and supports their proliferation. Androgen receptor (AR) is critical in the early stage of prostate cancer growth. Our previous finding indicates that Cdk5 is able to increase Ser81 phosphorylation of AR and its transactivation as well as prostate cancer cell growth. However, the relationship between these two major growth regulators in androgen-dependent prostate cancer, AR and Akt, remains unclear. In this study with the experiments performed in LNCaP cells, we found that Akt inhibition by LY294002 treatment increased Egr1 expression through down-regulating β-catenin and the downstream p35 expression to Egr1 was therefore increased. Since p35 is a regulator of Cdk5 kinase, it illustrates that Akt inhibition was to activate Cdk5 and cause Ser81 phosphorylation of AR, which suggests that AR could be activated by Akt-dependent Cdk5 activation. In conclusion, although Akt inhibition is detrimental to cell growth, Cdk5-dependent AR activation becomes an alternative pathway to maintain the growth of prostate cancer cell. This finding implies that Cdk5 might serve a critical linkage between the pathways of Akt and AR and play an important role in regulating growth of prostate cancer cells under stress.

過去在不同的癌症細胞中被發現PI3K/Akt signaling的異常活化會導致其增生能力 (Proliferation) 的增強,而在攝護腺癌 (Prostate cancer) 早期發展時的生長能力中,雄性激素受體 (Androgen receptor, AR) 的活化也是非常重要的。我們實驗室過去研究發現Cdk5 (Cyclin-dependent kinase 5) 會磷酸化AR的絲氨酸第81位點 (Ser81 site),從而導致了增加其蛋白質穩定性與細胞核蛋白質表現量,進行相關下游基因的調控以及促進其生長能力,然而在雄性激素依賴型攝護腺癌中的Akt與AR此兩大主要生長調控者之間的關係仍然不甚清楚。在本次研究中,我們發現透過Akt活性抑制劑LY294002的處理之下,會減少β-catenin的蛋白質表現量與細胞核蛋白質表現量,之後並增加了Egr1的表現,進而增加了Cdk5的調控子p35的蛋白質表現量,導致了Cdk5的活性增加之後而磷酸化了AR的Ser81位點並促進了AR的穩定性與細胞核蛋白質表現量,顯示了Akt活性抑制作用會透過活化Cdk5而活化了AR。雖然Akt活性的抑制作用會降低細胞生長的能力,但透過Cdk5造成的AR活化則成為了攝護腺癌細胞中的另一種維持生長能力的訊息傳遞訊號,這樣的發現顯示了Cdk5可能在攝護腺癌細胞在經歷環境壓力之時是一個連接Akt訊息傳遞與AR訊息傳遞之間的重要關鍵因子,在生長能力中扮演兩大訊息傳遞之間的重要連結角色。
URI: http://hdl.handle.net/11455/92137
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-06起公開。
Appears in Collections:生命科學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101052213-1.pdf4.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.