Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92191
標題: 十字花科黑腐病菌二級傳訊分子c-di-GMP與菌質體分泌蛋白SAPX之致病分子機制探討
Molecular pathogenesis of Xanthomonas secondary messenger c-di-GMP and phytoplasma effector SAPX
作者: 李佳樺
Chia-Hua Li
關鍵字: 細菌二級傳訊分子;阿拉伯芥;植物菌質體;c-di-GMP;Arabidopsis;phytoplasma
引用: Bai, X., Correa, V.R., Toruno, T.Y., Ammar el, D., Kamoun, S., and Hogenhout, S.A. (2009). AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular plant-microbe interactions 22, 18-30. Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J.W., and Hogenhout, S.A. (2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of bacteriology 188, 3682-3696. Bertaccini, A., and Duduk, B. (2009). Phytoplasma and phytoplasma diseases: a review of recent research Phytopathol. Mediterr. 48, 355-378. Boatwright, J.L., and Pajerowska-Mukhtar, K. (2013). Salicylic acid: an old hormone up to new tricks. Molecular plant pathology 14, 623-634. Dunlevy, J.D., Dennis, E.G., Soole, K.L., Perkins, M.V., Davies, C., and Boss, P.K. (2013). A methyltransferase essential for the methoxypyrazine-derived flavour of wine. Plant journal 75, 606-617. Dunlevy, J.D., Soole, K.L., Perkins, M.V., Dennis, E.G., Keyzers, R.A., Kalua, C.M., and Boss, P.K. (2010). Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: grape-derived aroma compounds important to wine flavour. Plant molecular biology 74, 77-89. Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M., and Dangl, J.L. (2006). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annual review of microbiology 60, 425-449. Guillaumie, S., Ilg, A., Rety, S., Brette, M., Trossat-Magnin, C., Decroocq, S., Leon, C., Keime, C., Ye, T., Baltenweck-Guyot, R., Claudel, P., Bordenave, L., Vanbrabant, S., Duchene, E., Delrot, S., Darriet, P., Hugueney, P., and Gomes, E. (2013). Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality. Plant physiology 162, 604-615. Hogenhout, S.A., Oshima, K., Ammar el, D., Kakizawa, S., Kingdom, H.N., and Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Molecular plant pathology 9, 403-423. Hugueney, P., Provenzano, S., Verries, C., Ferrandino, A., Meudec, E., Batelli, G., Merdinoglu, D., Cheynier, V., Schubert, A., and Ageorges, A. (2009). A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant physiology 150, 2057-2070. Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H.Y., Wei, W., Suzuki, S., Tanaka, M., Miyata, S., Ugaki, M., and Namba, S. (2004). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135-142. Koch, A., Doyle, C.L., Matthews, M.A., Williams, L.E., and Ebeler, S.E. (2010). 2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype. Phytochemistry 71, 2190-2198. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A.M., Reinhardt, R., and Seemuller, E. (2008). The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC genomics 9, 306. Lee, I.M., Bottner, K.D., Secor, G., and Rivera-Varas, V. (2006). 'Candidatus Phytoplasma americanum', a phytoplasma associated with a potato purple top wilt disease complex. International journal of systematic and evolutionary microbiology 56, 1593-1597. Lu, Y.T., Li, M.Y., Cheng, K.T., Tan, C.M., Su, L.W., Lin, W.Y., Shih, H.T., Chiou, T.J., and Yang, J.Y. (2014). Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant physiology 164, 1456-1469. Oshima, K., Shiomi, T., Kuboyama, T., Sawayanagi, T., Nishigawa, H., Kakizawa, S., Miyata, S.-i., Ugaki, M., and Namba, S. (2001). Isolation and Characterization of Derivative Lines of the Onion Yellows Phytoplasma that Do Not Cause Stunting or Phloem Hyperplasia. Phytopathology 91, 1024-1029. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature genetics 36, 27-29. Pare, P.W., and Tumlinsin, J.H. (1999). Plant Volatiles as a Defense against Insect Herbivores. Plant physiology 121, 325-331. Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., and Hernould, M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Molecular plant-microbe interactions 19, 62-68. Siddall, E.C., and Marples, N.M. (2008). Better to be bimodal: the interaction of color and odor on learning and memory. Behavioral Ecology 19, 425-432. Sugio, A., Kingdom, H.N., MacLean, A.M., Grieve, V.M., and Hogenhout, S.A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 108, E1254-1263. Wheeler, C.A., and Carde, R.T. (2013). Defensive allomones function as aggregation pheromones in diapausing Ladybird Beetles, Hippodamia convergens. Journal of chemical ecology 39, 723-732. Bai, X., Correa, V.R., Toruno, T.Y., Ammar el, D., Kamoun, S., and Hogenhout, S.A. (2009). AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular plant-microbe interactions 22, 18-30. Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J.W., and Hogenhout, S.A. (2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of bacteriology 188, 3682-3696. Bertaccini, A., and Duduk, B. (2009). Phytoplasma and phytoplasma diseases: a review of recent research Phytopathol. Mediterr. 48, 355-378. Boatwright, J.L., and Pajerowska-Mukhtar, K. (2013). Salicylic acid: an old hormone up to new tricks. Molecular plant pathology 14, 623-634. Dunlevy, J.D., Dennis, E.G., Soole, K.L., Perkins, M.V., Davies, C., and Boss, P.K. (2013). A methyltransferase essential for the methoxypyrazine-derived flavour of wine. Plant journal 75, 606-617. Dunlevy, J.D., Soole, K.L., Perkins, M.V., Dennis, E.G., Keyzers, R.A., Kalua, C.M., and Boss, P.K. (2010). Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: grape-derived aroma compounds important to wine flavour. Plant molecular biology 74, 77-89. Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M., and Dangl, J.L. (2006). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annual review of microbiology 60, 425-449. Guillaumie, S., Ilg, A., Rety, S., Brette, M., Trossat-Magnin, C., Decroocq, S., Leon, C., Keime, C., Ye, T., Baltenweck-Guyot, R., Claudel, P., Bordenave, L., Vanbrabant, S., Duchene, E., Delrot, S., Darriet, P., Hugueney, P., and Gomes, E. (2013). Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality. Plant physiology 162, 604-615. Hogenhout, S.A., Oshima, K., Ammar el, D., Kakizawa, S., Kingdom, H.N., and Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Molecular plant pathology 9, 403-423. Hugueney, P., Provenzano, S., Verries, C., Ferrandino, A., Meudec, E., Batelli, G., Merdinoglu, D., Cheynier, V., Schubert, A., and Ageorges, A. (2009). A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant physiology 150, 2057-2070. Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H.Y., Wei, W., Suzuki, S., Tanaka, M., Miyata, S., Ugaki, M., and Namba, S. (2004). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135-142. Koch, A., Doyle, C.L., Matthews, M.A., Williams, L.E., and Ebeler, S.E. (2010). 2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype. Phytochemistry 71, 2190-2198. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A.M., Reinhardt, R., and Seemuller, E. (2008). The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC genomics 9, 306. Lee, I.M., Bottner, K.D., Secor, G., and Rivera-Varas, V. (2006). 'Candidatus Phytoplasma americanum', a phytoplasma associated with a potato purple top wilt disease complex. International journal of systematic and evolutionary microbiology 56, 1593-1597. Lu, Y.T., Li, M.Y., Cheng, K.T., Tan, C.M., Su, L.W., Lin, W.Y., Shih, H.T., Chiou, T.J., and Yang, J.Y. (2014). Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant physiology 164, 1456-1469. Oshima, K., Shiomi, T., Kuboyama, T., Sawayanagi, T., Nishigawa, H., Kakizawa, S., Miyata, S.-i., Ugaki, M., and Namba, S. (2001). Isolation and Characterization of Derivative Lines of the Onion Yellows Phytoplasma that Do Not Cause Stunting or Phloem Hyperplasia. Phytopathology 91, 1024-1029. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature genetics 36, 27-29. Pare, P.W., and Tumlinsin, J.H. (1999). Plant Volatiles as a Defense against Insect Herbivores. Plant physiology 121, 325-331. Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., and Hernould, M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Molecular plant-microbe interactions 19, 62-68. Siddall, E.C., and Marples, N.M. (2008). Better to be bimodal: the interaction of color and odor on learning and memory. Behavioral Ecology 19, 425-432. Sugio, A., Kingdom, H.N., MacLean, A.M., Grieve, V.M., and Hogenhout, S.A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 108, E1254-1263. Wheeler, C.A., and Carde, R.T. (2013). Defensive allomones function as aggregation pheromones in diapausing Ladybird Beetles, Hippodamia convergens. Journal of chemical ecology 39, 723-732.
摘要: 
c-di-GMP是一種廣泛存在於細菌中的二級傳訊分子,可以調控許多重要的細胞功能,如細胞型態的改變、菌體的移動和生物膜的形成。除此之外,c-di-GMP也參與致病因子的表達,影響病原菌的致病能力。c-di-GMP 的合成是由兩個GTP經diguanylate cyclases (DGCs)催化形成;而c-di-GMP的降解則是經由phosphodiesterases (PDEs)水解成 5'-phosphoguanylyl-(3'-5')-guanosine (pGpG)。目前在細菌中發現的DGCs和PDEs分別具有保守的GGDEF以及EAL蛋白結構區域,這些蛋白雖然為數眾多且廣泛分布在原核細菌中,但在動物以及植物中並沒有發現任何具有這兩種結構區域的蛋白。先前文獻證實哺乳動物細胞的DEAD-box polypeptide 41 (DDX41)能夠辨認並結合 c-di-GMP,活化STING-TBK1-IRF3的免疫訊息傳遞路徑,產生干擾素(Interferons)來抵抗病原菌。因此,專屬於微生物的c-di-GMP分子可成為宿主辨識外來病原菌的標靶分子,具有誘發宿主防禦系統的能力。本研究測試c-di-GMP誘發植物免疫反應之可能性探討。首先,透過BLAST之胺基酸序列比較分析,發現擬南芥(Arabidopsis)基因組中具有二個胺基酸序列相似度高達86 %的DDX41同源基因。因此本研究藉由E. coli的表現系統進行擬南芥DDX41同源蛋白的表現與純化,並利用pull-down實驗測試與 c-di-GMP結合的能力。同時,已知Xanthomonas campestris pv. campestris中的 XC02498004 (含GGDEF結構區域)和 XC14118004 (含EAL結構區域)對病原菌的致病性有相當程度的影響,因此本研究建構XC02498004和XC14118004的轉基因擬南芥,測試植物內表現c-di-GMP合成或降解的酵素對植物免疫反應的影響。目前結果尚未發現 c-di-GMP能誘發植物的免疫反應的證據。

c-di-GMP is a secondary messenger in bacteria. It regulates a range of physiological functions including developmental transition, motility, biofilm formation, and virulence. c-di-GMP is produced from two molecules of GTP by diguanylate cyclases (DGCs) and is broken down into 5'-phosphguanylyl-(3'-5')-guanosine (pGpG) by phosphodiesterases (PDEs). DGC activity is associated with the GGDEF domain and PDE activity is associated with the EAL domain. Both GGDEF and EAL domains are only been found in Bacteria, but not in plants and animals. Previously, DEAD-box polypeptide 41 (DDX41) has been shown to play as a sensor that can bind c-di-GMP and trigger the production of type I interferon via STING-TBK1-IRF3 signaling pathway in mammalian cells. Therefore, c-di-GMP acts as a pathogen-associated molecular pattern and elicits a host immune response in mammalian cells. To determine whether c-di-GMP can trigger a plant immune response or not, we first purified recombinant AtDDX41L1, the DDX41 homolog in Arabidopsis, and examine the interaction between AtDDX41L1 and c-di-GMP. At the same time, we generated 35S::XC02498004 and 35S::XC14118004 transgenic lines, which contain the GGDEF and EAL domain respectively. These transgenic plants are able to examine the effects of c-di-GMP in the plant immune response. So far, our findings suggest that c-di-GMP is not able to trigger an immune response in plants.
URI: http://hdl.handle.net/11455/92191
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生物化學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101058008-1.pdf7.84 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.