Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92193
標題: 參與竹嵌紋病毒於植物細胞中移動 之宿主蛋白搜尋
The search for host protein factor(s) involved in the movement of Bamboo mosaic virus in plant cells
作者: 黃依婷
Yi-Ting Huang
關鍵字: 無;no
引用: Adams, M.J., Antoniw, J.F., Bar-Joseph, M., Brunt, A.A., Candresse, T., Foster,G.D., Martelli, G.P., Milne, R.G., Zavriev, S.K., and Fauquet, C.M. (2004). The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Archives of virology 149, 1045-1060. Angell, S.M., Davies, C., and Baulcombe, D.C. (1996). Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216, 197-201. Atabekov, J.G., Rodionova, N.P., Karpova, O.V.,Kozlovsky, S.V., and Poljakov,V.Y. (2000). The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271, 259-263. Bamunusinghe, D., Hemenway, C.L., Nelson, R.S., Sanderfoot, A.A., Ye, C.M., Silva,M.A., Payton, M., and Verchot-Lubicz, J. (2009). Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 393, 272-285. Betti, C., Lico, C., Maffi, D., D'Angeli, S., Altamura, M.M., Benvenuto, E., Faoro,F., and Baschieri, S. (2012). Potato virus X movement in Nicotiana benthamiana:new details revealed by chimeric coat protein variants. Mol Plant Pathol 13, 198-203. Carvalho, C.M., Pouwels, J., van Lent, J.W., Bisseling, T., Goldbach, R.W., and Wellink, J. (2004). The movement protein of cowpea mosaic virus binds GTP and single-stranded nucleic acid in vitro. Journal of virology 78, 1591-1594. Chang, B.Y., Lin, N.S., Liou, D.Y., Chen, J.P., Liou, G.G., and Hsu, Y.H. (1997).Subcellular localization of the 28 kDa protein of the triple-gene-block of bamboo mosaic potexvirus. The Journal of general virology 78 ( Pt 5), 1175-1179. Cheng, C.P., and Tsai, C.H. (1999). Structural and functional analysis of the 3'untranslated region of bamboo mosaic potexvirus genomic RNA. Journal of molecular biology 288, 555-565. Cheng, C.P., Tzafrir, I., Lockhart, B.E., and Olszewski, N.E. (1998). Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus. The Journal of general virology 79 ( Pt 4), 925-929. Cheng, J.H., Peng, C.W., Hsu, Y.H., and Tsai, C.H. (2002). The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. Journal of virology 76, 6114-6120. Cheng, S.F., Tsai, M.S., Huang, C.L., Huang, Y.P., Chen, I.H., Lin, N.S., Hsu,Y.H., Tsai, C.H., and Cheng, C.P. (2013). Ser/Thr kinase-like protein of Nicotiana benthamiana is involved in the cell-to-cell movement of Bamboo mosaic virus. PloS one 8, e62907. Chou, Y.L., Hung, Y.J., Tseng, Y.H., Hsu, H.T., Yang, J.Y., Wung, C.H., Lin, N.S.,Meng, M., Hsu, Y.H., and Chang, B.Y. (2013). The stable association of virion with the triple-gene-block protein 3-based complex of Bamboo mosaic virus. PLoS pathogens 9, e1003405.Cruz, S.S., Roberts, A.G., Prior, D.A., Chapman, S., and Oparka, K.J. (1998).Cell-to-cell and phloem-mediated transport of potato virus X. The role of virions. The Plant cell 10, 495-510. Dashevskaya, S., Kopito, R.B., Friedman, R., Elbaum, M., and Epel, B.L. (2008).Diffusion of anionic and neutral GFP derivatives through plasmodesmata in epidermal cells of Nicotiana benthamiana. Protoplasma 234, 13-23. Davies, C., Hills, G., and Baulcombe, D.C. (1993). Sub-cellular localization of the 25-kDa protein encoded in the triple gene block of potato virus X. Virology 197,166-175. Dolja, V.V., Kreuze, J.F., and Valkonen, J.P. (2006). Comparative and functional genomics of closteroviruses. Virus research 117, 38-51.Feki, S., Loukili, M.J., Triki-Marrakchi, R., Karimova, G., Old, I., Ounouna, H., Nato, A., Nato, F., Guesdon, J.L., Lafaye, P., et al. (2005). Interaction between tobacco Ribulose-l,5-biphosphate Carboxylase/Oxygenase large subunit (RubisCO-LSU) and the PVY Coat Protein (PVY-CP). Eur J Plant Pathol 112,221-234. Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K., and Angell, S. (2003). TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Molecular plant-microbe interactions : MPMI 16, 132-140. Gibbs, A.J. (1976). Viruses and plasmodesmata. In intercellular communication in plants: Studies on plasmodesmata, 149-164. Goodwin, P.B. (1983). Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157, 124-130. Gorbalenya, A.E., and Koonin, E.V. (1993). Helicases: amino acid sequence comparisons and structure-function relationships. Current Opinion in Structural Biology 3, 419-429. Han, Y.T., Tsai, C.S., Chen, Y.C., Lin, M.K., Hsu, Y.H., and Meng, M. (2007). Mutational analysis of a helicase motif-based RNA 5'-triphosphatase/NTPase from bamboo mosaic virus. Virology 367, 41-50. Hefferon, K.L., Doyle, S., and AbouHaidar, M.G. (1997). Immunological detection of the 8K protein of potato virus X (PVX) in cell walls of PVX-infected tobacco and transgenic potato. Archives of virology 142, 425-433. Howard, A.R., Heppler, M.L., Ju, H.J., Krishnamurthy, K., Payton, M.E., and Verchot-Lubicz, J. (2004). Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. 32 benthamiana leaves. Virology 328, 185-197. Hsu, H.T., Hsu, Y.H., Bi, I.P., Lin, N.S., and Chang, B.Y. (2004). Biological functions of the cytoplasmic TGBp1 inclusions of bamboo mosaic potexvirus. Archives of virology 149, 1027-1035. Hsu, H.T., Tseng, Y.H., Chou, Y.L., Su, S.H., Hsu, Y.H., and Chang, B.Y. (2009). Characterization of the RNA-binding properties of the triple-gene-block protein 2 of Bamboo mosaic virus. Virology journal 6, 50. Huang, Y.L., Han, Y.T., Chang, Y.T., Hsu, Y.H., and Meng, M. (2004). Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of bamboo mosaic virus. Journal of virology 78, 1271-1280. Huang, Y.L., Hsu, Y.H., Han, Y.T., and Meng, M. (2005). mRNA guanylation catalyzed by the S-adenosylmethionine-dependent guanylyltransferase of bamboo mosaic virus. The Journal of biological chemistry 280, 13153-13162. Ju, H.J., Brown, J.E., Ye, C.M., and Verchot-Lubicz, J. (2007). Mutations in the central domain of potato virus X TGBp2 eliminate granular vesicles and virus cell-to-cell trafficking. Journal of virology 81, 1899-1911. Ju, H.J., Samuels, T.D., Wang, Y.S., Blancaflor, E., Payton, M., Mitra, R., Krishnamurthy, K., Nelson, R.S., and Verchot-Lubicz, J. (2005). The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant physiology 138, 1877-1895. Kalinina, N.O., Rakitina, D.V., Solovyev, A.G., Schiemann, J., and Morozov, S.Y. (2002). RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296, 321-329. Kasteel, D., Wellink, J., Verver, J., van Lent, J., Goldbach, R., and van Kammen, A. (1993). The involvement of cowpea mosaic virus M RNA-encoded proteins in 33 tubule formation. The Journal of general virology 74 ( Pt 8), 1721-1724. Kasteel, D.T., van der Wel, N.N., Jansen, K.A., Goldbach, R.W., and van Lent, J.W. (1997). Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. The Journal of general virology 78 ( Pt 8), 2089-2093. Krishnamurthy, K., Heppler, M., Mitra, R., Blancaflor, E., Payton, M., Nelson, R.S., and Verchot-Lubicz, J. (2003). The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309, 135-151. Lan, P., Yeh, W.B., Tsai, C.W., and Lin, N.S. (2010). A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. Molecular plant-microbe interactions : MPMI 23, 903-914. Laporte, C., Vetter, G., Loudes, A.M., Robinson, D.G., Hillmer, S., Stussi-Garaud, C., and Ritzenthaler, C. (2003). Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. The Plant cell 15, 2058-2075. Leshchiner, A.D., Solovyev, A.G., Morozov, S.Y., and Kalinina, N.O. (2006). A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement protein is responsible for ATPase activity and cooperative RNA binding. The Journal of general virology 87, 3087-3095. Li, Y.I., Chen, Y.J., Hsu, Y.H., and Meng, M. (2001a). Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. Journal of virology 75, 782-788. Li, Y.I., Cheng, Y.M., Huang, Y.L., Tsai, C.H., Hsu, Y.H., and Meng, M. (1998). Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. Journal of virology 72, 10093-10099. Li, Y.I., Shih, T.W., Hsu, Y.H., Han, Y.T., Huang, Y.L., and Meng, M. (2001b). The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5' 34 cap structure by exhibiting RNA 5'-triphosphatase activity. Journal of virology 75, 12114-12120. Lin, M.K., Chang, B.Y., Liao, J.T., Lin, N.S., and Hsu, Y.H. (2004). Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. The Journal of general virology 85, 251-259. Lin, M.K., Chang, B.Y., Liao, J.T., Lin, N.S., and Hsu, Y.H. (2004). Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. The Journal of general virology 85, 251-259. Lin, M.K., Hu, C.C., Lin, N.S., Chang, B.Y., and Hsu, Y.H. (2006). Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the bamboo mosaic virus satellite RNA-mediated expression system. The Journal of general virology 87, 1357-1367. Lin, M.T., Kitajima, E.W., Cupertino, F.P. and Costa, C.L. (1977). Partial purification and some properties of Bamboo mosaic virus. Phytopathology 67, 1439-1443. Lin, N.S., and Chen, C.C. (1991). Association of bamboo mosaic virus (BoMV) and BoMV-specific electron-dense crystalline bodies with chloroplasts. Lin, N.S., Lin, F.Z., Huang, T.Y., and Hsu, Y.H. (1992). Genome properties of bamboo mosaic virus. Phytopathology 82, 731-734. Lin, N.S., Lin, B.Y., Lo, N.W., Hu, C.C., Chow, T.Y., and Hsu, Y.H. (1994). Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. The Journal of general virology 75 ( Pt 9), 2513-2518. Lin, L., Luo, Z., Yan, F., Lu, Y., Zheng, H., and Chen, J. (2011). Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus genes 43, 90-92. 35 Linnik, O., Liesche, J., Tilsner, J., and Oparka, K.J. (2013). Unraveling the structure of viral replication complexes at super-resolution. Frontiers in plant science 4, 6. Liou, D.-Y., Hsu, Y.-H., Wung, C.-H., Wang, W.-H., Lin, N.-S., and Chang, B.-Y. (2000). Functional Analyses and Identification of Two Arginine Residues Essential to the ATP-Utilizing Activity of the Triple Gene Block Protein 1 of Bamboo Mosaic Potexvirus. Virology 277, 336-344. Lough, T.J., Shash, K., Xoconostle-Cazares, B., Hofstra, K.R., Beck, D.L., Balmori, E., Forster, R.L.S., and Lucas, W.J. (1998). Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol. Plant-Microbe Interact. 11, 801-814. Lough, T.J., Netzler, N.E., Emerson, S.J., Sutherland, P., Carr, F., Beck, D.L., Lucas, W.J., and Forster, R.L. (2000). Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Molecular plant-microbe interactions : MPMI 13, 962-974. Lucas, W.J., Ding, B., van der Schoot, C. (1993). Tansley review No. 58: plasmodesmata and the supracellular nature of plants. New Phytol 125, 435-476 Mathioudakis, M.M., Veiga, R., Ghita, M., Tsikou, D., Medina, V., Canto, T., Makris, A.M., and Livieratos, I.C. (2012). Pepino mosaic virus capsid protein interacts with a tomato heat shock protein cognate 70. Virus research 163, 28-39. Melcher, U. (2000). The '30K' superfamily of viral movement proteins. The Journal of general virology 81, 257-266. Mitra, R., Krishnamurthy, K., Blancaflor, E., Payton, M., Nelson, R.S., and Verchot-Lubicz, J. (2003). The potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement. Virology 312, 35-48. 36 Morozov, S.Y., and Solovyev, A.G. (2003). Triple gene block: modular design of a multifunctional machine for plant virus movement. The Journal of general virology 84, 1351-1366. Oparka, K.J., Roberts, A.G., Boevink, P., Santa Cruz, S., Roberts, I., Pradel, K.S., Imlau, A., Kotlizky, G., Sauer, N., and Epel, B. (1999). Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97, 743-754. Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392-1395. Park, M.R., Park, S.H., Cho, S.Y., and Kim, K.H. (2009). Nicotiana benthamiana protein, NbPCIP1, interacting with Potato virus X coat protein plays a role as susceptible factor for viral infection. Virology 386, 257-269. Raffaele, S., Bayer, E., Lafarge, D., Cluzet, S., German Retana, S., Boubekeur, T., Leborgne-Castel, N., Carde, J.P., Lherminier, J., Noirot, E., et al. (2009). Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. The Plant cell 21, 1541-1555. Robards, A.W. (1975). Plasmodesmata. Annual Review of Plant Physiology 26, 13-29. Robards, A.W., and Lucas, W.J. (1990). Plasmodesmata. Annual Review of Plant Physiology and Plant Molecular Biology 41, 369-419. Rodionova, N.P., Karpova, O.V., Kozlovsky, S.V., Zayakina, O.V., Arkhipenko, M.V., and Atabekov, J.G. (2003). Linear remodeling of helical virus by movement protein binding. Journal of molecular biology 333, 565-572. Samuels, T.D., Ju, H.J., Ye, C.M., Motes, C.M., Blancaflor, E.B., and Verchot-Lubicz, J. (2007). Subcellular targeting and interactions among the Potato 37 virus X TGB proteins. Virology 367, 375-389. Sanchez-Navarro, J., Fajardo, T., Zicca, S., Pallas, V., and Stavolone, L. (2010). Caulimoviridae tubule-guided transport is dictated by movement protein properties. Journal of virology 84, 4109-4112. Schagger, H. (2006). Tricine-SDS-PAGE. Nature protocols 1, 16-22. Schagger, H., and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry 166, 368-379. Schepetilnikov, M.V., Manske, U., Solovyev, A.G., Zamyatnin, A.A., Jr., Schiemann, J., and Morozov, S.Y. (2005). The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking. The Journal of general virology 86, 2379-2391. Scholthof, H.B. (2005). Plant virus transport: motions of functional equivalence. Trends in plant science 10, 376-382. Schonknecht, G., Brown, J.E., and Verchot-Lubicz, J. (2008). Plasmodesmata transport of GFP alone or fused to potato virus X TGBp1 is diffusion driven. Protoplasma 232, 143-152. Solovyev, A.G., Stroganova, T.A., Zamyatnin, A.A., Jr., Fedorkin, O.N., Schiemann, J., and Morozov, S.Y. (2000). Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269, 113-127. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical chemistry 68, 850-858. Tabita, F.R., Hanson, T.E., Li, H., Satagopan, S., Singh, J., and Chan, S. (2007). Function, structure, and evolution of the RubisCO-like proteins and their RubisCO 38 homologs. Microbiology and molecular biology reviews : MMBR 71, 576-599. Taliansky, M., Torrance, L., and Kalinina, N.O. (2008). Role of plant virus movement proteins. Methods Mol Biol 451, 33-54. Tamai, A., and Meshi, T. (2001). Cell-to-cell movement of Potato virus X: the role of p12 and p8 encoded by the second and third open reading frames of the triple gene block. Molecular plant-microbe interactions : MPMI 14, 1158-1167. Terry, B.R., and Robards, A.W. (1987). Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171, 145-157. Tilsner, J., Linnik, O., Wright, K.M., Bell, K., Roberts, A.G., Lacomme, C., Santa Cruz, S., and Oparka, K.J. (2012). The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant physiology 158, 1359-1370. Tseng, Y.H., Hsu, H.T., Chou, Y.L., Hu, C.C., Lin, N.S., Hsu, Y.H., and Chang, B.Y. (2009). The two conserved cysteine residues of the triple gene block protein 2 are critical for both cell-to-cell and systemic movement of Bamboo mosaic virus. Molecular plant-microbe interactions : MPMI 22, 1379-1388. Verchot-Lubicz, J., Torrance, L., Solovyev, A.G., Morozov, S.Y., Jackson, A.O., and Gilmer, D. (2010). Varied movement strategies employed by triple gene block-encoding viruses. Molecular plant-microbe interactions : MPMI 23, 1231-1247. Voinnet, O., Lederer, C., and Baulcombe, D.C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157-167. Wessel, D., and Flugge, U.I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical biochemistry 138, 141-143. Wu, C.H., Lee, S.C., and Wang, C.W. (2011). Viral protein targeting to the cortical 39 endoplasmic reticulum is required for cell-cell spreading in plants. The Journal of cell biology 193, 521-535. Wung, C.H., Hsu, Y.H., Liou, D.Y., Huang, W.C., Lin, N.S., and Chang, B.Y. (1999). Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. The Journal of general virology 80 ( Pt 5), 1119-1126. Yan, F., Lu, Y., Lin, L., Zheng, H., and Chen, J. (2012). The ability of PVX p25 to form RL structures in plant cells is necessary for its function in movement, but not for its suppression of RNA silencing. PloS one 7, e43242. Ye, C., Dickman, M.B., Whitham, S.A., Payton, M., and Verchot, J. (2011). The unfolded protein response is triggered by a plant viral movement protein. Plant physiology 156, 741-755. Zhao, J., Liu, Q., Zhang, H., Jia, Q., Hong, Y., and Liu, Y. (2013). The rubisco small subunit is involved in tobamovirus movement and Tm-2(2)-mediated extreme resistance. Plant physiology 161, 374-383.
摘要: 
竹嵌紋病毒(Bamboo mosaic virus, BaMV)利用其三重疊基因區(triple gene block,TGB)所轉譯出的三個移動蛋白,TGBp1、TGBp2 和 TGBp3,協助病毒在植物宿主中移動 本實驗室曾提出兩種移動蛋白協助病毒在宿主細胞內運輸的。模式。在第一種模式中,TGBp2、TGBp3 會和病毒顆粒結合,再招募 TGBp1,形成 TGBp1-TGBp2-TGBp3-virion 的移動複合體,沿著內質網絡向原生質絲(plasmodesmata, PD)移動。第二種模式則是 TGBp2 會誘導形成含有 TGBp2 及TGBp3 的內質網囊泡,並攜帶著病毒顆粒,沿著細胞骨架 actin 移動至 PD,在此移動過程中 TGBp1 會加入,參與協助病毒通過原生質絲。但是,除了上述病毒移動蛋白外 是否有植物宿主蛋白也存在此病毒移動複合體中 協助病毒移動,,,卻仍不清楚?本研究乃希望搜尋可能和病毒移動複合體結合,並協助病毒移動的宿主蛋白。由於病毒在細胞間轉移,必定要通過 PD,因此我首先嘗試從感病植物的 PD 中萃取病毒移動複合體,並利用 anti-HA 進行免疫沉澱,純化出含有TGBp3:HA 的可能病毒移動複合體。不過,存在 PD 內含有 TGBp3:HA 的病毒移動複合體含量過少,不利於我進行宿主蛋白的搜尋。因此,我將搜索範圍擴大到整個感病葉組織,亦即從全葉組織中萃取含有 TGBp3:HA 病毒移動複合體的樣品 並以 anti-HA 進行免疫沉澱 純化含有 TGBp3:HA 的病毒移動複合體可惜,,,。
銀染的結果顯示,此複合體中並沒有任何宿主蛋白的存在。為了突破搜尋不到宿主蛋白的困境,我改從感病葉純化病毒顆粒,希望能在純化的病毒顆粒中,找到可能協助病毒移動的宿主蛋白。LC-MS-MS 的分析結果顯示,病毒顆粒上存在著宿主的 RuBP carboxylase。進一步以免疫沉澱分析 RuBP carboxylase 與病毒移動複合體中的那一個元件具有交互作用,發現其與 TGBp1 與 CP 具有交互作用的能力。但是,這樣的交互作用對 BaMV 病毒在細胞中的移動是否具有重要性,則有待進一步的探討。

Bamboo mosaic virus (BaMV) encodes three functionally coordinated movement proteins, TGBp1, TGBp2 and TGBp3, from the triple gene block (TGB) of virus genome to facilitate its cell-to-cell movement in host plant. Our lab has proposed two modes to explain how movement proteins assistant in virus movement. In first mode,
TGBp2 and TGBp3 associate stably with virions, and recruit TGBp1 to form TGBp1-TGBp2-TGBp3-virion movement complex. This complex then moved alongside the ER network toward the plasmodesmata (PD). In second mode, the virion associates with the TGBp2 induced ER-derived TGBp2- and TGBp3-containing membrane vesicles. The virion-associated vesicles are then transported to the PD through actin filament. The TGBp1 would be recruited to the virion-associated vesicles during the process of trafficking. However, in addition to the movement protein, TGBp1,TGBp2 and TGBp3, whether host factors also are included in the virus movement complex to assist virus movement remains unknown.
This study is aimed to search for host factors that would associate with movement complex of virus and assist in virus movement. Because plant viruses need to pass through PD during intercellular movement, I first tried to extract movement complex of virus from the PD of infected plant tissues, and purify TGBp3:HA containing
movement complex by immunoprecipitation with anti-HA. However, the amount of TGBp3:HA containing movement complex in the PD was too low for me to looking for host factors. Thus, I expanded the search to entire leaf tissues, that is, I extracted virus movement complex from the entire leaf tissues of infected plants and purify
TGBp3:HA containing movement complex by immunoprecipitation with anti-HA.
Unfortunately, no host protein factor was observed after SDS-PAGE and silver staining. In order to break the plight for not finding host factors, I turned to purify
virions from infected leaves and hope to search for host factors that assist in virus movement. The results of LC-MS-MS showed that the virions contained host factor,
named RuBP carboxylase. I further utilized immunoprecipitation to analysis the interaction partner of RuBP carboxylase movement complex of virus. The results showed that TGBp1 and CP could interact with RuBP carboxylase. However, how are those interactions important to viral movement remain unknown.
URI: http://hdl.handle.net/11455/92193
Rights: 同意授權瀏覽/列印電子全文服務,2016-05-11起公開。
Appears in Collections:生物化學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101058018-1.pdf2.69 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.