Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92197
標題: Cyclic di-GMP藉由結合其新型受體蛋白XcYajQ調控XcOPPs的酵素活性
Cyclic di-GMP regulate XcOPPs activity by binding with a novel receptor protein XcYajQ
作者: 萬騏寧
Chi-Ning Wan
關鍵字: 二級訊息傳遞子;Cyclic di-GMP;XcYajQ;XcOPPs
引用: 1. Schirmer, T. and U. Jenal, Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol, 2009. 7(10): p. 724-35. 2. Romling, U., M. Gomelsky, and M.Y. Galperin, C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol, 2005. 57(3): p. 629-39. 3. Romling, U. and D. Amikam, Cyclic di-GMP as a second messenger. Curr Opin Microbiol, 2006. 9(2): p. 218-28. 4. Jenal, U. and J. Malone, Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet, 2006. 40: p. 385-407. 5. Hengge, R., Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol, 2009. 7(4): p. 263-73. 6. Ryan, R.P., et al., Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A, 2006. 103(17): p. 6712-7. 7. Simm, R., et al., GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol, 2004. 53(4): p. 1123-34. 8. Slater, H., et al., A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol, 2000. 38(5): p. 986-1003. 9. Tal, R., et al., Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol, 1998. 180(17): p. 4416-25. 10. Tischler, A.D. and A. Camilli, Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol, 2004. 53(3): p. 857-69. 11. Chin, K.H., et al., The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol, 2010. 396(3): p. 646-62. 12. Leduc, J.L. and G.P. Roberts, Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol, 2009. 191(22): p. 7121-2. 13. Tao, F., et al., The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol, 2010. 192(4): p. 1020-9. 14. Hickman, J.W. and C.S. Harwood, Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol, 2008. 69(2): p. 376-89. 15. Krasteva, P.V., et al., Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science, 2010. 327(5967): p. 866-8. 16. Tuckerman, J.R., G. Gonzalez, and M.A. Gilles-Gonzalez, Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol, 2011. 407(5): p. 633-9. 17. Navarro, M.V., et al., Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure, 2009. 17(8): p. 1104-16. 18. Navarro, M.V., et al., Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol, 2011. 9(2): p. e1000588. 19. Amikam, D. and M.Y. Galperin, PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics, 2006. 22: p. 3-6. 20. Benach, J., et al., The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J., 2007. 26: p. 5153-5166. 21. Habazettl, J., et al., Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies change clustering as molecular readout. J. Biol. Chem., 2011. 286: p. 14304-14314. 22. Chin, K.-H., et al., The c-AMP receptor-like protein Clp is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J. Mol. Biol., 2010. 396: p. 646-662. 23. Li, T.-N., et al., A novel tetrameric PilZ domain structure from Xanthomonads. PLoS ONE, 2011. 6: p. e22036. 24. Li, T.-N., et al., XC1028 from Xanthomonas campestris adopts a PilZ domain-like structure without a c-di-GMP switch. Proteins: Structure, Function and Bioinformatics, 2009. 75: p. 282-288. 25. Liao, Y.-T., et al., On the crystallization and preliminary X-ray diffraction characterization of FimXEAL-c-di-GMP and FimXEAL-c-di-GMP-PilZ complexes from Xanthomonas campestris. Acta Crystallogr., 2012. F68: p. 301-305. 26. Chabrol, H., et al., Hyperfrontality of cerebral blood flow in depressed adolescents. Am J Psychiatry, 1986. 143(2): p. 263-4. 27. 許涵鈞、吳雅芳、謝明憲、鄭安秀, 十字花科蔬菜品種抗黑腐病篩選之研究. 臺南區農業改良場研究彙報, 2011. 57: p. 11-19. 28. Weiss, B.D., et al., Isolation and characterization of a generalized transducing phage for Xanthomonas campestris pv. campestris. J Bacteriol, 1994. 176(11): p. 3354-9. 29. Vorholter, F.J., et al., The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol, 2008. 134(1-2): p. 33-45. 30. Cardoso, P.F., et al., Plasma atrial natriuretic factor concentrations in a canine model of right heart pressure overload. Clin Invest Med, 1991. 14(4): p. 310-9. 31. Ryan, R.P. and J.M. Dow, Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol, 2011. 19(3): p. 145-52. 32. Harding, N.E., et al., Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. J Bacteriol, 1987. 169(6): p. 2854-61. 33. Ryan, R.P., et al., Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol, 2007. 63(2): p. 429-42. 34. Sondermann, H., N.J. Shikuma, and F.H. Yildiz, You've come a long way: c-di-GMP signaling. Curr Opin Microbiol, 2012. 15(2): p. 140-6. 35. Solomon, E.I., et al., Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev, 2000. 100(1): p. 235-350. 36. Simpson, A.J., et al., The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature, 2000. 406(6792): p. 151-9. 37. da Silva, A.C., et al., Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002. 417(6887): p. 459-63. 38. An, S.Q., et al., Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog, 2014. 10(10): p. e1004429. 39. Teplyakov, A., et al., Crystal structure of the YajQ protein from Haemophilus influenzae reveals a tandem of RNP-like domains. J Struct Funct Genomics, 2003. 4(1): p. 1-9. 40. Murzin, A.G., et al., SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 1995. 247(4): p. 536-40. 41. Lindahl, M., et al., Crystal structure of the ribosomal protein S6 from Thermus thermophilus. EMBO J, 1994. 13(6): p. 1249-54. 42. Wilson, K.S., et al., Crystal structure of a prokaryotic ribosomal protein. Proc Natl Acad Sci U S A, 1986. 83(19): p. 7251-5. 43. Shamoo, Y., et al., Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 A resolution. Nat Struct Biol, 1997. 4(3): p. 215-22. 44. Oubridge, C., et al., Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature, 1994. 372(6505): p. 432-8. 45. Price, S.R., P.R. Evans, and K. Nagai, Crystal structure of the spliceosomal U2B'-U2A' protein complex bound to a fragment of U2 small nuclear RNA. Nature, 1998. 394(6694): p. 645-50. 46. Vidaver, A.K., R.K. Koski, and J.L. Van Etten, Bacteriophage phi6: a Lipid-Containing Virus of Pseudomonas phaseolicola. J Virol, 1973. 11(5): p. 799-805. 47. Qiao, X., et al., The role of host protein YajQ in the temporal control of transcription in bacteriophage Phi6. Proc Natl Acad Sci U S A, 2008. 105(41): p. 15956-60. 48. Qiao, X., et al., Interaction of a host protein with core complexes of bacteriophage phi6 to control transcription. J Virol, 2010. 84(9): p. 4821-5. 49. Kellogg, B.A. and C.D. Poulter, Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol, 1997. 1(4): p. 570-8. 50. Ogura, K. and T. Koyama, Enzymatic Aspects of Isoprenoid Chain Elongation. Chem Rev, 1998. 98(4): p. 1263-1276. 51. Soballe, B. and R.K. Poole, Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology, 1999. 145 ( Pt 8): p. 1817-30. 52. Liang, P.H., T.P. Ko, and A.H. Wang, Structure, mechanism and function of prenyltransferases. Eur J Biochem, 2002. 269(14): p. 3339-54. 53. Wallrapp, F.H., et al., Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily. Proc Natl Acad Sci U S A, 2013. 110(13): p. E1196-202. 54. Aussel, L., et al., Biosynthesis and physiology of coenzyme Q in bacteria. Biochim Biophys Acta, 2014. 1837(7): p. 1004-11. 55. Finkel, T. and N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature, 2000. 408(6809): p. 239-47. 56. Okada, K., et al., The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J Bacteriol, 1997. 179(9): p. 3058-60. 57. Zhang, J., et al., Expression, crystallization and preliminary crystallographic study of octaprenyl pyrophosphate synthase from Helicobacter pylori. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011. 67(Pt 2): p. 263-5. 58. Guo, R.T., et al., Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J Biol Chem, 2005. 280(21): p. 20762-74. 59. Hosfield, D.J., et al., Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J Biol Chem, 2004. 279(10): p. 8526-9. 60. Guo, R.T., et al., Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10022-7. 61. Guo, R.T., et al., Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic Thermotoga maritima and mechanism of product chain length determination. J Biol Chem, 2004. 279(6): p. 4903-12. 62. Zhang, J., et al., Modeling studies with Helicobacter pylori octaprenyl pyrophosphate synthase reveal the enzymatic mechanism of trans-prenyltransferases. Int J Biochem Cell Biol, 2012. 44(12): p. 2116-23. 63. Aslanidis, C. and P.J. de Jong, Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res, 1990. 18(20): p. 6069-74. 64. Boivin, S., S. Kozak, and R. Meijers, Optimization of protein purification and characterization using Thermofluor screens. Protein Expr Purif, 2013. 91(2): p. 192-206. 65. Ericsson, U.B., et al., Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem, 2006. 357(2): p. 289-98. 66. Zeng, S., et al., Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev, 2014. 43(10): p. 3426-52. 67. Luft, J.R. and G.T. DeTitta, A method to produce microseed stock for use in the crystallization of biological macromolecules. Acta Crystallogr D Biol Crystallogr, 1999. 55(Pt 5): p. 988-93. 68. 鄭有舜, X-光小角度散射在軟物質上的應用. 物理雙月刊, 2004. 二十六卷二期. 69. Skou, S., R.E. Gillilan, and N. Ando, Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat Protoc, 2014. 9(7): p. 1727-39. 70. Putnam, C.D., et al., X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys, 2007. 40(3): p. 191-285. 71. https://www.lifetechnologies.com/order/catalog/product/E6645. 72. Han, X., et al., Crystal structures of ligand-bound octaprenyl pyrophosphate synthase from Escherichia coli reveal the catalytic and chain-length determining mechanisms. Proteins, 2015. 83(1): p. 37-45.
摘要: 
Cyclic di-GMP是一個獨特且廣泛存在於細菌中的二級訊息傳遞分子,細菌藉由這一個訊息傳遞分子控制著複雜的細胞活動。以前對於c-di-GMP受體蛋白的研究主要關注在具有GGDEF、EAL、HD-GYP、PilZ等功能域的蛋白質,但cyclic di-GMP可能的功能尚未完全明瞭。最近,Robert P. Ryan等人利用pull-down assay的方式發現十字花科黑腐病菌 ( Xanthomonas campestris pv. campestris , Xcc ) 中的XcYajQ ( XC_3703 ) 為一重要蛋白,不但會和cyclic di-GMP結合,並可以和其他蛋白產生交互作用,改變這些蛋白的功能。本篇論文主要針對XcOPPs與XcYajQ蛋白複合體的結構與功能分析。XcOPPs是一個Octaprenyl pyrophosphate 合成酶,會將一個法尼焦磷酸( farnesyl pyrophosphate )和五個異戊烯焦磷酸( isopentenyl pyrophosphate )結合,形成一個具有40個碳的長鏈產物,以供泛醌( ubiquinone )和甲基萘醌( menaquinone )的側鏈合成。由於泛醌和甲基萘醌在細菌體內的電子傳遞鏈中具有重要的功能,因此cyclic di-GMP可能藉由影響XcOPPs的酵素活性調節細菌的電子傳鏈速率,改變細菌的生理現象。
本論文利用Biacore方式測定出XcYajQ和XcOPPs之間有強的親和力,達到2.76µM。接下來,再利用小角度散射,分別觀察XcYajQ和XcOPPs的大致外型。又使用EnzChek pyrophosphate assay kit ( Molecular Probes Inc. ) 測量XcOPPs的酵素活性,以及XcYajQ和cyclic-di-GMP的結合如何影響XcOPPs的合成能力。發現當XcYajQ和XcOPPs作用時,會使得XcOPPs的活性提升。而加入cyclic-di-GMP時能讓XcOPPs的活性更加增強。本論文首次證實藉由與XcYajQ的結合,cyclic di-GMP可間接影響XcOPPs的酵素活性。

Cyclic di-guanylate (cyclic di-GMP) is an unique and important second messenger in bacteria which regulates many critical processes include motility, biofilm formation and virulence. But it may play additional functions that are to be uncovered . Recent study found that XcYajQ, a YajQ family protein from the plant pathogen Xanthomonas campestris pv. Campestris (Xcc), is a novel receptor of cyclic di-GMP. Importantly, XcYajQ is able to interact with a variety of other proteins to alter their function. Octaprenyl pyrophosphate synthase (OPPs) is one of these identified proteins which can interact with XcYajQ with strong affinity. XcOPPs catalyzes the formation of a C40 long-chain product OPP that serves as the side chain of ubiquinone and menaquinone by using one allylic substrate farnesyl pyrophosphate (FPP) and five homoallylic substrate isopentenyl pyrophosphate (IPP) molecules. It is likely that interaction of XcYajQ with XcOPPs may influence the XcOPPs activity.
We have expressed and purified XcYajQ and XcOPPs to a hige purity, and used Biacore to measure the affinity between XcYajQ and its two ligands cyclic di-GMP and XcOPPs. XcYajQ is found to exhibit strong affinity toward cyclic di-GMP and XcOPPs with a KD of 0.35µM and 2.76µM, respectively. They are thus good target for structure studies using X-ray crystallography. We also find out that XcYajQ can increase XcOPPs enzyme activity, furthermore, cyclic di-GMP enhance XcOPPs enzyme activity to a higher level by binding to XcYajQ. This dissertation first proves that cyclic di-GMP can indirectly alter XcOPPs enzyme activity by bindind with XcYajQ.
URI: http://hdl.handle.net/11455/92197
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-21起公開。
Appears in Collections:生物化學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102058012-1.pdf2.38 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.