Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92208
標題: Processing-bodies參與植物免疫反應之分子機制探討
Molecular characterization of the processing-bodies involved in plant immune responses
作者: 黃斐琳
Fei-Lin Huang
關鍵字: 阿拉伯芥;P-bodies
引用: Bashkirov, V.I., Scherthan, H., Solinger, J.A., Buerstedde, J.M., and Heyer, W.D. (1997). A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. The journal of cell biology 136, 761-773. Bloch, D.B., Gulick, T., Bloch, K.D., and Yang, W.H. (2006). Processing body autoantibodies reconsidered. Rna 12, 707-709. Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H., and Sheen, J. (2010). Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464, 418-422. Burdette, D.L., Monroe, K.M., Sotelo-Troha, K., Iwig, J.S., Eckert, B., Hyodo, M., Hayakawa, Y., and Vance, R.E. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. Buttner, D., and Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS microbiology reviews 34, 107-133. Coller, J., and Parker, R. (2004). Eukaryotic mRNA decapping. Annual review of biochemistry 73, 861-890. Eulalio, A., Behm-Ansmant, I., and Izaurralde, E. (2007). P bodies: at the crossroads of post-transcriptional pathways. Nature reviews. Molecular cell biology 8, 9-22. Eulalio, A., Frohlich, K.S., Mano, M., Giacca, M., and Vogel, J. (2011). A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly. PloS one 6, e17296. Eystathioy, T., Chan, E.K., Tenenbaum, S.A., Keene, J.D., Griffith, K., and Fritzler, M.J. (2002). A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Molecular biology of the cell 13, 1338-1351. Frei Dit Frey, N., Garcia, A.V., Bigeard, J., Zaag, R., Bueso, E., Garmier, M., Pateyron, S., de Tauzia-Moreau, M.L., Brunaud, V., Balzergue, S., Colcombet, J., Aubourg, S., Martin-Magniette, M.L., and Hirt, H. (2014). Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defenses. Genome biology 15, R87. Fu, Z.Q., Guo, M., Jeong, B.R., Tian, F., Elthon, T.E., Cerny, R.L., Staiger, D., and Alfano, J.R. (2007). A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447, 284-288. Jiang, W., Jiang, B.L., Xu, R.Q., Huang, J.D., Wei, H.Y., Jiang, G.F., Cen, W.J., Liu, J., Ge, Y.Y., Li, G.H., Su, L.L., Hang, X.H., Tang, D.J., Lu, G.T., Feng, J.X., He, Y.Q., and Tang, J.L. (2009). Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Molecular plant-microbe interactions : MPMI 22, 1401-1411. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. Nathans, R., Chu, C.Y., Serquina, A.K., Lu, C.C., Cao, H., and Rana, T.M. (2009). Cellular microRNA and P bodies modulate host-HIV-1 interactions. Molecular cell 34, 696-709. Rosebrock, T.R., Zeng, L., Brady, J.J., Abramovitch, R.B., Xiao, F., and Martin, G.B. (2007). A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448, 370-374. Ryan, R.P., Vorholter, F.J., Potnis, N., Jones, J.B., Van Sluys, M.A., Bogdanove, A.J., and Dow, J.M. (2011). Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nature reviews. Microbiology 9, 344-355. Staiger, D., Korneli, C., Lummer, M., and Navarro, L. (2013). Emerging role for RNA-based regulation in plant immunity. The new phytologist 197, 394-404. Thran, M., Link, K., and Sonnewald, U. (2012). The Arabidopsis DCP2 gene is required for proper mRNA turnover and prevents transgene silencing in Arabidopsis. The plant journal : for cell and molecular biology 72, 368-377. Vlot, A.C., Dempsey, D.A., and Klessig, D.F. (2009). Salicylic Acid, a multifaceted hormone to combat disease. Annual review of phytopathology 47, 177-206. Williams, P.H. (1980). Black rot: a continuing threat to world crucifers. Plant Disease. Xin, X.F., and He, S.Y. (2013). Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annual review of phytopathology 51, 473-498. Xu, J., and Chua, N.H. (2009). Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development. The plant cell 21, 3270-3279. Xu, J., and Chua, N.H. (2011). Processing bodies and plant development. Current opinion in plant biology 14, 88-93. Xu, J., and Chua, N.H. (2012). Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation. The embo journal 31, 1975-1984. Xu, J., Yang, J.Y., Niu, Q.W., and Chua, N.H. (2006). Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. The plant cell 18, 3386-3398. Zipfel, C., and Robatzek, S. (2010). Pathogen-associated molecular pattern-triggered immunity: veni, vidi...? Plant physiology 154, 551-554. 黃德昌. (1986). 臺灣十字花科黑腐病菌偵測及防治.
摘要: 
Processing bodies又稱P-bodies,是位於真核生物細胞質中的小體,目前已知是RNA與蛋白質聚集的場所,其與調控mRNA的降解、基因的沉默以及轉譯的抑制有關。由於病原菌的感染會觸發植物細胞產生免疫反應,這些反應不但會啟動免疫相關基因的表現,還需要後轉錄的調節來做適當的改變,因此P-bodies的功能或許與宿主免疫系統的運作息息相關。目前在植物系統中並無P-bodies與免疫防禦系統相關的研究被探討,因此本實驗的主要目的為了解P-bodies是否參與在植物免疫系統的反應之中,以及植物病原菌之致病性蛋白分子與P-bodies交互作用的可能性。為了釐清P-bodies與植物免疫系統是否有相關性,以細菌鞭毛胜?(flg22)來促使PAMP所誘導的免疫反應,偵測其路徑相關基因的表現量,並利用水楊酸來測試P-bodies是否參與在免疫防禦路徑中。同時以病原菌感染P-bodies突變株來觀察其病徵以及細菌繁殖量,發現P-bodies的缺失會使植物較易感病,因此推測P-bodies的確參與在植物免疫反應之中。另一方面,以共軛焦螢光顯微鏡,來觀察X. campastris pv.campastris 8004之致病分子(effector)與P-bodies組成因子的細胞分布的情況,發現兩者有重疊的情形,推測P-bodies可能是效應蛋白攻擊的宿主的標的。

Processing bodies, also known as P-bodies, are small cytoplasmic foci that contain RNA and proteins required for mRNA degradation, RNA silencing and translational repression. The plant immune response triggered by bacterial infection not only activates the immune response genes, but also regulates the transcripts through post-transcriptional modification. So far, the relationship between P-bodies and plant immune system has not been characterized. With PAMPs responses examination, bacterial infection, and disease symptoms characterization, we showed that the plants deficient in P-bodies are impaired in immune responses against bacterial infections. In addition, with subcellular localization analysis, we showed that the effectors of X. campastris pv. campastris 8004 and P-bodies components were co-localized in the cytoplasmic foci. These results suggest that P-bodies are involved in plant immune responses and might be the targets of pathogen effectors.
URI: http://hdl.handle.net/11455/92208
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生物化學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100058013-1.pdf4.57 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.