Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92210
DC FieldValueLanguage
dc.contributorJung-Yie Kaoen_US
dc.contributor高振益zh_TW
dc.contributor.author黃郁涵zh_TW
dc.contributor.authorYu-Han Huangen_US
dc.contributor.other生物化學研究所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-15T05:30:04Z-
dc.identifier.citation[1]中華藥典第六版 p340-341 [2]「動物用藥殘留標準」 [3]行政院公報 第019 卷 第149 期 20130809農防字第1021476331A 號 [4] Ehrlich J, Bartz QR, Smith RM, Joslyn DA, Burkholder PR. Chloromycetin, a New Antibiotic From a Soil Actinomycete. Science. 1947; 106(2757):417. [5] Gottlieb D, Carter He, Legator M, Gallicchio V. The biosynthesis of chloramphenicol. I. Precursors stimulating the synthesis. J Bacteriol. 1954; 68(2):243-251. [6] Loren M. Long , H. D. Troutman. Chloramphenicol1 (Chloromycetin). VII. Synthesis through p-Nitroacetophenone. J. Am. Chem. Soc. 1949; 71(7):2473–2475. [7] Chloramphenicol'. The Merck Manual. Merck. [8] Kuni CM, Glazko AJ, Finland M. Persistence of antibiotics in blood of patients with acute renal failure. II. Chloramphenicol and its metabolic products in the blood of patients with severe renal disease or hepatic cirrhosis. J Clin Invest. 1959; 38:1498 – 1509 [9] Friedman CA, Lovejoy FC, Smith AL. Chloramphenicol disposition in infants and children. J. Pediatr. 1979; 95:1071-1077 [10] Girardi C, Odore R. Pharmacological treatments and risks for the food chain. Vet Res Commun. 2008; 32 Suppl 1:S11-8. [11] Turton JA, Fagg R, Sones WR, Williams TC, Andrews CM. Characterization of the myelotoxicity of chloramphenicol succinate in the B6C3F1 mouse. Int J Exp Pathol. 2006; 87(2):101-112. [12] Jimenez JJ, Arimura GK, Abou-Khalil WH, Isildar M, Yunis AA. Chloramphenicol-induced bone marrow injury: possible role of bacterial metabolites of chloramphenicol. Blood. 1987; 70(4):1180-1185. [13] Milhaud, G., Metabolic study discussion on chloramphenicol WHO report, 1983. [14] Pooja Shukla, F. W. Bansode and R. K. Singh. Chloramphenicol Toxicity: A Review. Journal of Medicine and Medical Sciences. 2011; 2(13):1313-1316 [15] Girardi C1, Odore R. Pharmacological treatments and risks for the food chain. Vet Res Commun. 2008; 32 Suppl 1:S11-8. [16] Nemazee D. Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol. 2006; 6(10):728-740. [17] Woof JM, Burton DR. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol. 2004; 4(2):89-99. [18] Natsume A1, Niwa R, Satoh M. Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC. Drug Des Devel Ther. 2009; 21;(3)7-16. [19] Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975; 256(5517):495-497. [20] Steinitz M. Three decades of human monoclonal antibodies: past, present and future developments. Hum Antibodies. 2009; 18(1-2):1-10. [21] Chu-Chen Cheng, Kuan-Huei Hsieh, Yi-Chih Lei, Yung-Te Tai, Tong-Hsuan Chang, Shi-Yuang Sheu, Wen-Ren Li, And Tzong-Fu Kuo. Development and Residue Screening of the 2 Furazolidone Metabolite, 3-Amino-2-oxazolidinone (AOZ), in Cultured Fish by an Enzyme-Linked Immunosorbent Assay. J Agric Food Chem. 2009; 57(13):5687-5692 [22] Yu FY1, Vdovenko MM, Wang JJ, Sakharov IY. Comparison of Enzyme-Linked Immunosorbent Assays with Chemiluminescent and Colorimetric Detection for the Determination of Ochratoxin A in Food. J Agric Food Chem. 2011; 59(3):809–813 [23] Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988; 85(16):5879-5883. [24] Coloma MJ, Hastings A, Wims LA, Morrison SL. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. Immunol Methods. 1992; 152(1):89-104. [25] Li J, Wang Y, Li QX, Wang YM, Xu JJ, Dong ZW. Cloning of 3H11 mAb variable region gene and expression of 3H11 human-mouse chimeric light Chain. World J Gastroenterol. 1998; 4(1):41-44.. [26] Miller BR Demarest SJ, Lugovskoy A, Huang F, Wu X, Snyder WB, Croner LJ, Wang N, Amatucci A, Michaelson JS, Glaser SM. tability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng Des Sel. 2010; 23(7):549-557. S [27] Peipp M, Saul D, Barbin K, Bruenke J, Zunino SJ, Niederweis M, Fey GH. Efficient eukaryotic expression of fluorescent scFv fusion proteins directed against CD antigens for FACS applications. J Immunol Methods. 2004; 285(2):265-280. [28] Serebrovskaya EO, Edelweiss EF, Stremovskiy OA, Lukyanov KA, Chudakov DM, Deyev SM. Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proc Natl Acad Sci U S A. 2009; 106(23):9221-9225. [29] Yuan Y. A survey and evaluation of population-based screening for gastric cancer. Cancer. Biol Med. 2013; 10(2): 72–80. [30] Yan J, Gu GJ, Jost C, Hammond M, Pluckthun A, Landegren U, Kamali-Moghaddam M. A Universal Approach to Prepare Reagents for DNA-Assisted Protein Analysis. PLoS One. 2014; 9(9): e108061 [31] Schweitzer B, Wiltshire S, Lambert J, O'Malley S, Kukanskis K, Zhu Z, Kingsmore SF, Lizardi PM, Ward DC. Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci U S A. 2000; 97(18): 10113–10119 [32] Pourhassan-Moghaddam M, Rahmati-Yamchi M, Akbarzadeh A, Daraee H, Nejati-Koshki K, Hanifehpour Y, Joo SW. Protein detection through different platforms of immuno-loop-mediated isothermal amplification. Nanoscale Res Lett. 2013; 8(1): 485 [33] Ambekar CS, Cheung B, Lee J, Chan LC, Liang R, Kumana CR. Metabolism of chloramphenicol succinate in human bone marrow. Eur J Clin Pharmacol. 2000; 56(5):405-409. [34] Li J, Wang Y, Li QX, Wang YM, Xu JJ, Dong ZW. Cloning of 3H11 mAb variable region gene and expression of 3H11 human-mouse chimeric light Chain. World J Gastroenterol. 1998; 4(1):41-44.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/92210-
dc.description.abstract在過去,氯黴素(CAP)是廣泛應用在獸醫與人醫的抗生素,然而氯黴素殘留會造成人體骨髓抑制與再生不良性貧血等副作用,因此現在已被禁止用於產肉動物的治療,台灣也對農畜產品制定了零容忍政策。 在食品安全議題受到重視的現今,利用有效且不昂貴的免疫方法快速檢測抗生素殘留以取代昂貴費時的LC-MS分析應更具有發展價值。 因此開發一個高感度的抗體並研製成檢測套組成為確保食品安全的重要方針。 本研究自表現CAP抗體之融合瘤細胞中成功地取得其可變區基因並進一步建構成融合His-tag之單鏈抗體之表現質體,在最適化之大腸桿菌表現宿主BL21(DE3)pLysS表現後可利用Ni-resin親和性管柱純化並獲得CAP之單鏈抗體。利用ELISA方法分析可證實CAP單鏈抗體可以專一識別CAP,在抗體競爭性試驗同時也證實了CAP單鏈抗體與其單株抗體均會競爭相同結構。在未來更可利用易錯聚合酶鏈反應(error prone PCR)來增加靈敏度並輔以融合不同螢光蛋白或結合其他偵測技術以增加免疫檢測的偵測極限與多元應用性。zh_TW
dc.description.abstractChloramphenicol (CAP) is a potent and efficient antibiotic widely used in pharmacological treatments in veterinary and human. Despite being highly effective, it shows severe toxicity as the residual CAP results in Aplastic anemia (AA) and bone marrow suppression. Due to the potential risk in public health of CAP utilization, the use in food-producing animal's therapy has been banned. Taiwan government has established a zero tolerance policy to CAP in livestock products. Recently, the food crises have grabbed huge public attention in Taiwan. Replacing the expensive LC-MS analysis by cheap and efficient rapid immunoassay to detect the residual illegal compound can better fit to public interest. Therefore, to generate high sensitivity antibodies for immunoassay kits play a key role in improving the food safety. This study has successfully cloned CAP-scFv gene from hybridoma and constructed CAP-scFv gene onto an expression vector fused with a His-tag gene. The expression of this protein in E. coli BL21(DE3) pLysS was optimized and the expressed recombinant CAP-scFv protein was purified with Ni-IMAC. We confirmed the specificity between CAP-scFv and chloramphenicol via ELISA assay. Furthermore we also demonstrated that CAP-scFv recognizes the same molecular structure as CAP monoclonal antibody does by performing the competition assay with CAP monoclonal antibody. In the future, using the error-prone PCR approach further improve the CAP-scFv sensitivity and fusion of fluorescent to the protein flank on scFv or combination with various detection methods will be the next target to enhance the detection limit of immunoassay and create novel applications to numerous aspects.en_US
dc.description.tableofcontents圖目錄 vii 表目錄 viii 附錄目錄 ix 第一章 緒論 1 第二章 文獻回顧 2 2.1氯黴素(chloramphenicol; CAP)簡介 2 2.1.1氯黴素的特性與用途 2 2.1.2氯黴素的獸藥殘留與對人體的危害 3 2.1.3 台灣對氯黴素之法律規範 4 2.2 抗體之簡介 5 2.2.1單株抗體在檢測上之應用 7 2.2.2單鏈抗體的介紹 7 2.2.3單鏈抗體在檢測上之應用 8 2.2.4抗體的其他應用 9 2.3 研究動機與目的 9 第三章 材料與方法 11 3.1 材料 11 3.1.1酵素類 11 3.1.2試劑類 12 3.1.2套組與其他類 13 3.2 方法 14 3.2.1 單株抗體之取得 (Obtain the monoclonal antibody) 14 3.2.2 Total RNA之萃取 (Total RNA isolation) 14 3.2.3 反轉錄反應取得cDNA (Reverse transcription) 15 3.2.4 VH與VL的取得 (Amplify the variable region of the monoclonal antibody) 16 3.2.5 連接子組裝 (Linker assembly) 17 3.2.6 最終組裝 (Final assembly) 18 3.2.7 單鏈抗體片段再放大 (Re-amplification of scFv fragment) 19 3.2.8 T/A 選殖 (T/A cloning) 20 3.2.9 接合(Ligation) 21 3.2.10 Colony PCR check 22 3.2.11 PCR產物的純化 (Purification of PCR products) 23 3.2.12 質體製備 (Mini-prepare of plasmid) 23 3.2.13 勝任細胞的製備 (prepare of competent cell) 24 3.2.14 轉形作用(Transformation) 25 3.2.15 限制酶處理( Restriction enzyme digestion ) 25 3.2.16 DNA瓊脂凝膠膠體電泳 (Agarose gel electrophoresis) 26 3.2.17 蛋白表現 (ScFv protein expression) 26 3.2.18 可溶性蛋白質製備 (Prepare of the soluble ScFv protein) 27 3.2.19 金屬親和性層析純化 (Immobilize metal ion chromatography purification) 27 3.2.20 蛋白A親和性層析純化 (Protein A resin purification) 28 3.2.21蛋白L親和性層析純化 (Protein L resin purification) 28 3.2.22 蛋白質SDS-PAGE膠體電泳(SDS-PAGE electrophoresis) 29 3.2.23 西方轉漬法(Western blotting) 30 3.2.24酵素連接免疫吸附法(ELISA assay) 30 第四章 結果與討論 32 4.1 單株抗體純化與分型鑑定 32 4.2建構可表現CAP之單鏈抗體基因 32 4.3 取得並定序單鏈抗體基因 33 4.4 構築單鏈抗體表現質體 34 4.5 單鏈抗體的表現與純化 34 4.6 單鏈抗體之親和性分析 35 4.7 討論與未來展望 36 第五章 參考文獻 37 圖 42 表 59 附錄 66zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-02-02起公開。zh_TW
dc.subject氯黴素zh_TW
dc.subject單鏈抗體zh_TW
dc.subjectchloramphenicolen_US
dc.subjectsingle-chain variable fragmenten_US
dc.subjectscFven_US
dc.title重組抗-氯黴素單鏈抗體之製備與分析zh_TW
dc.titlePreparation and characterization of recombinant single-chain variable fragment (scFv) against chloramphenicolen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-02-02zh_TW
dc.date.openaccess2018-02-02-
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.fulltextwith fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:生物化學研究所
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101058021-1.pdf5.53 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.