Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92223
標題: Study of rapid cell death in Xanthomonas campestrispv. glycines
Xanthomonas campestrispv. glycines 細胞快速死亡現象之探討
作者: 張哲杰
Chieh -Che Chang
關鍵字: 細胞快速死亡現象;Xanthomonas campestrispv. glycines
引用: 李振維 (2010). Xanthomonas campestris β-lactamase基因之訊號序列與運送系統之探討. 國立中興大學分子生物研究所碩士論文. 黃崧銘 (2010).多元轉錄調控因子Clp對Xanthomonas campestres pv. campestres β-lactamase表現之調控. 國立中興大學分子生物研究所碩士論文. 陳義元 (2011).Xanthomonas campestres pv. Campestres 與Stenotrophomonas maltophilia. 國立中興大學分子生物研究所博士論文. 李永安 (2002).Xanthomonas 屬病原菌及甘蔗流膠病之診斷鑑定技術.植物重 要防檢疫疫病診斷鑑定技術研習會專刊 135-159. Berger, N. A. (1985). Poly (ADP-ribose) in the cellular response to DNA damage. Radiat Res 101:4-15. Bradbury, J. F. (1984). Genus Xanthomonas. In Bergey's Manual of Systematic Bacteriology (Krieg, N. R., and Holt, J. G. eds.) 1st ed. vol. 1 pp. 199-209. The Williams & Wilkins Co., Baltimore. Carson, D. A., C. J. Carrera. et al. (1986). DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res 164:273-281. Chaturvedi, D. and R. (2013). Mahalakshmi methionine mutations of outer membrane protein x influence structural stability and Beta-barrel unfolding. PLoS One 8(11): e79351. Chin, K. H., Lee, Y. C. et al. (2010). The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396, 646-662. Colombo, S., Ma, P., Cauwenberg, L. et al. (1998). Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17, 3326-3341. De Vlaminck, I., M. T. van Loenhout. et al. (2012). Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol Cell 46(5): 616-24. Dwyer, D. J., D. M. Camacho. et al. (2012). Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46(5): 561-72. Engelberg-Kulka, H., R. Hazan. (2006). Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2(e135): 1518-1526. Ezraty, B., A. Vergnes. et al. (2013). Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 340(6140): 1583-7. Gautam, S., and A. Sharma. (2002a). Involvement of caspase-3-like protein in rapid cell death of Xanthomonas. Mol Microbiol 44:393-401. Gautam, S., and A. Sharma. (2002b). Rapid cell death in Xanthomonas campestris pv. glycines. J Gen Appl Microbiol 48:67-76. Guan, L., Q. Liu. et al. (2013). Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol 13: 25. Hayward, A. C. (1993). The hosts of Xanthomonas (Swings, J. G., and Civerolo, E. L. eds), p. 1-17. In J.G. Swings and E. L. Civerolo (ed.). Chapman & Hall, London. Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature 407:770-76. Heu, S., Y. Kang, et al. (2001). gly gene cloning and expression and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl Environ Microbiol 67, 4105-4110. Hwang, I., S. M. Lim. et al. (1992). Cloning andcharacterization of pathogenicity genes from Xanthomonas campestris pv. glycines. J Bacteriol 174(6): 1923-31. He, Y. W., A. Y. Ng, et al. (2007). Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signaling network. Mol Microbiol 64(2): 281-92. Jacobson, M. D., M. Weil, et al. (1997). Programmed cell death in animal development. Cell 88:347-354. Kazantsev, A. V. and N. R. Pace. (2006). Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol 4(10): 729-40. Klem, T. J. and V. J. Davisson. (1993). Imidazole glycerol phosphate synthase: the glutamine amidotransferase in histidine biosynthesis. Biochemistry 32(19): 5177-86. Kohanski, M. A., D. J. Dwyer, et al. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5): 797-810. Koh, D. W., T. M. Dawson, et al. (2005). Mediation of cell death by poly (ADP-ribose) polymerase-1. Pharmacol Res 52:5-14. Koh, D. W., T. M. Dawson, et al. (2005). Poly (ADP-ribosyl) ation regulation of life and death in the nervous system. Cell Mol Life Sci 62:760-768. Lewis, K. (2000). Programmed death in bacteria. Microbiol Mol Biol Rev 64:503-514. Li, J., and J. Yuan. (2008). Caspases in apoptosis and beyond. Oncogene 27:6194-6206. Li, P., D. Nijhawan, et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4): 479-89 Lubelski, J., R. Rink. et al. (2008). Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65(3): 455-76. Metzstein, M. M., G. M. Stanfield. et al. (1998). Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410-416. Nishizuka, Y., O. Hayaishi. et al (1967). Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J Biol Chem 242:3164-3171. Oh, C., S. Heu. et al. (1999). An hrcU-homologous gene mutant of Xanthomonas campestris pv. glycines 8ra that lost pathogenicity on the host plant but was able to elicit the hypersensitive response on nonhosts. Mol Plant Microbe Interact 12(7): 633-9. Park, S. C., B. P. Pham. et al. (2008). Structural and functional characterization of osmotically inducible protein C (OsmC) from Thermococcus kodakaraensis KOD1. Biochim Biophys Acta 1784(5): 783-8. Perroud, B. and D. Le Rudulier. (1985). Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol 161(1): 393-401. Pham, H. T., K. Z. Riu, et al. (2004). Bactericidal activity of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines, on phytopathogenic Xanthomonas campestris pv. vesicatoria cells. Appl Environ Microbiol 70(8): 4486-90. Qian, W., Y. Jia, et al. (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15(6): 757-67. Raju, K. K., H. S. Misra. et al. (2007). Xanthomonas caspase displays an inherent PARP-like activity. FEMS Microbiol Lett 272(2): 259-68 Raju, K. K., S. Gautam. et al. (2006). Molecules involved in the modulation of rapid cell death in Xanthomonas. J Bacteriol 188:5408-16. Saddler, G. S. And J. F. Bradbury. (2005). Genus Xanthomonas. In Bergey's Manual of Systematic Bacteriology (Brenner, D. J. Krieg, N. R., and Staley, J. T. eds.) 2nd ed. vol. 2 pp. 63-90. Soldani, C., and A. I. Scovassi. (2002). Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7:321-328. Stennicke, H. R., J. M. Jurgensmeier. et al. (1998). Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273(42): 27084-90. Thowthampitak, J., B. T. Shaffer. et al. (2008). Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean. Phytopathology 98(12): 1252-60. Trebaol, G., L. Gardan. et al. (2000). Genomic and phenotypic characterization of Xanthomonas cynarae sp. nov., a new species that causes bacterial bract spot of artichoke (Cynara scolymus L.). Int. J. Syst. Evol. Microbiol. 50:1471-1478. Van den Mooter, M., and Swings, J. (1990). Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. Int. J. Syst. Bacteriol. 40:348-369. Vauterin, L., K. Kersters. et al. (1995). Reclassification of Xanthomonas. Int J Syst Bacteriol 45:472-489. Vega, D. E. and K. D. Young. (2013).Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants. Mol Microbiol. Vorholter, F. J., S. Schneiker. et al. (2008). The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134(1-2): 33-45. Wadhawan, S., S. Gautam. et al. (2010). Metabolic stress-induced programmed cell death in Xanthomonas. FEMS Microbiol Lett 312(2): 176-83. Sharma, A., A. N. Syed. et al. (1994) Characterisa-tion and plasmid profile of Xanthomonas campestris pv. glycines. J. Phytopathol., 141, 53–58. Syed, A. N. (1998) Molecular mechanisms of plant-pathogen in-teractions, Ph.D. Thesis, Mumbai University Sharma, A. (1999). Xanthomonas. Encyclopedia of Food Micro-biology, Academic Press, London, pp. 2323–2329. Pace, H. C. and C. Brenner. (2001). The nitrilase superfamily: classification, structure and function. Genome Biol 2(1): REVIEWS0001.
摘要: 
Xanthomonas campestris pv. glycines (Xcg) exhibits post-exponential rapid cell death (RCD) in LB medium. To investigate the mechanism of Xcg RCD, growth and survival rate of Xcg and X. campestris pv. campestris (Xcc) was first compared. The results indicated that RCD occurs in Xcg but not in Xcc. Random transposon mutagenesis using EZ-Tn5 was employed to isolate 4000 mutants; however, growth of all the insertional mutant strains in LB medium was found to be the same as that of the wild type strain. Based on previous findings and my results of two-dimensional gel electrophoresis (2D-GE) of the total cellular proteins and microarray analysis of the transcriptomes, several genes were suspected to be involved in RCD, which included pda, clp, glyAB, mopB, recA, genes encoding unknown protein 1318 and unknown protein 0249. A mutant of each of these genes was created separately by insertional inactivation. Growth curve in LB medium and XOLN medium, survival, and extracellular enzyme activity were assayed for these mutants. Results showed that i) glyAB, recA, unknown protein 1318, and unknown protein 0249 mutants exhibited the same growth rates similar to that of the wild-type Xcg, nor the RCD was affected, ii) enhanced RCD was observed in mopB mutant strain, and iii) secretion of extracellular enzymes was significantly affected in clp and mopB mutants but not in pda, glyAB, recA, unprotein 1318 and unprotein 0249 mutant strains. To understand the effect of salts on Xcg growth, different concentrations of NaCl, FeSO4, MgSO4, NiSO4and FeCl3 were added to the medium. Results showed that the addition of NaCl, MgSO4 and FeCl3 did not affect the growth and survival of Xcg, while addition of different concentrations of NiSO4 and FeSO4 slowed down Xcg RCD, indicating that Ni+2 and Fe+2 ions play an important role in RCD. Furthermore, glutathione (GSH) and glucose were found to suppress Xcg RCD, but the RCD was not affected by addition of nalidixic acid and dimethylsulfoxide (DMSO).

將Xanthomonascampestris pv. glycines (Xcg) 培養在 LB medium 中,生長進入靜止期後,細胞會有快速死亡 (rapid cell death, RCD) 的現象。為探討造成Xcg RCD現象之機制,本研究中首先觀察比較 Xcg與X. campestris pv. campestris (Xcc)之生長,發現 RCD 是 Xcg 特有現象。利用 EZ-Tn5™ Tnp Transposome™ Kit 進行基因體之任意突變,尚未能找出與 RCD 現象相關的基因。依據two-dimensional gelelectrophoresis (2D) 與 microarray 實驗方法,分析不同時期之蛋白質表現與 RNA 表現量差異之基因,以及過去研究文獻之報導,推測可能參與 RCD 現象的基因為 pda、clp、glyAB、mopB、recA、unknown protein 1318、unknown protein 0249。針對 Xcg pda、clp、glyAB、mopB、recA、unknown protein 1318、unknown protein 0249 等基因進行突變,構築獲得7個基因突變株。測試各突變株在 LB 與 XOLN medium中之生長曲線、存活菌數與胞外酵素活性之結果顯示,pda、clp、glyAB、recA、unprotein 1318與unprotein 0249 基因突變後並不會影響 Xcg 的 RCD 現象。但 mopB 之突變會提早 RCD 現象產生。進一步研究發現,pda、glyAB、recA、unprotein 1318與unprotein 0249之突變不影響 Xcg 胞外酵素的分泌。而 clp 與 mopB 之突變會明顯影響胞外酵素活性。為了解離子化合物對於 Xcg 之生長效應,在 LB 培養液中分別加入不同濃度之 NaCl、FeSO4、MgSO4、NiSO4以及 FeCl3。結果顯示,在 LB 培養基液中加入不同濃度之 NaCl、MgSO4以及 FeCl3,對於 Xcg生長與存活菌數沒有明顯影響。然而,加入不同濃度 NiSO4與 FeSO4後, Xcg 的 RCD 現象明顯趨緩,顯示 Ni+2 與 Fe+2 離子在 Xcg 的 RCD 機制中扮演重要的角色。此外,glutathione (GSH) 與葡萄糖也有抑制 Xcg RCD 的效應。但nalidixic acid與dimethylsulfoxide (DMSO) 則未有抑制 RCD 的功能。
URI: http://hdl.handle.net/11455/92223
Rights: 同意授權瀏覽/列印電子全文服務,2017-02-06起公開。
Appears in Collections:分子生物學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100055011-1.pdf3.52 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.