Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92230
標題: Develop an Analytical Platform for Efficient Detection of Phosphoproteins and Catechins Using Microwave, Nanoparticles and Mass Spectrometry
利用微波、奈米粒子與質譜術發展高效率之磷酸化蛋白與兒茶素分析平台
作者: 莊昱珉
Yu-Min Juang
關鍵字: 微波;質譜術;磷酸化蛋白;兒茶素;Microwave;Mass spectrometry;Phosphoprotein;Catechins
引用: 第一章 參考論文 簡明瑋 2011 量子點與石墨烯於脫附游離質譜術之應用。國立中興大學分子生物學所碩士論文 陳振泰 2003 二氧化鈦溶膠凝膠材料輔助雷射脫附游離質譜法之研究。國立交通大學應用化學學系碩士論文 Appleton, T.J., et al. (2005) Microwave technology for energy-efficient processing of waste. Applied Energy, 81: 85-113. Augustynski, J., et al. (1993). The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO2. Electrochim. Acta., 38: 43-46. Balandin, A.A., et al. (2008). Superior thermal conductivity of single-layer grapheme. Nano. Lett., 8: 902-907. Baghurst, D.R., et al. (1988). Application of microwave heating techniques for the synthesis of solid state inorganic compounds. J. Chem. Soc. Chem. Commun., 12: 829-830. Baghurst, D.R., et al. (1990). Application of microwave dielectric loss heating effects for the rapid and convenient synthesis of coordination compounds. Polyhedron, 9: 893-895. Beldjoudi, N., et al. (1988). Microwave curing of epoxy resins with diamino diphenyl methane, cross-linking under continues or plused waves. Eur. Polym. J., 24: 49-52. Brownson, D.A., et al. (2010). Graphene electrochemistry: an overview of potential applications. Analyst, 135: 2768-2778. Bose, A.K., et al. (1990). Highly accelerated reactions in microwave oven: synthesis of heterocycles. Heterocycles, 30: 741-744. Burdett, J.K., et al. (1987). Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc., 109: 3639-3646. Chen, C.T., et al. (2004). Molecularly imprinted TiO2-matrix-assisted laser desorption/ionization mass spectrometry for selectively detecting α-Cyclodextrin. Anal. Chem., 76: 1453-1457. Chen, C.T., et al. (2004). Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun. Mass Spectrom., 18: 1956-1964. Chen, C.T., et al. (2005). Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 77: 5912-5919. Chen, D., et al. (2010). Graphene-based materials in electrochemistry. Chem. Soc. Rev., 39: 3157-3180. Chen, S.T., et al. (1991). Enhancement of chemical-reactions by microwave irradiation. J. Chin. Chem. Soc., 38: 85-91. Chen, W.T., et al. (2013). Tea identification through surface-assisted laser desorption/ionization mass spectrometry. IJAMSC., 1: 11-21. Diebold, U., et al. (2003). The surface science of titanium dioxide. Surf. Sci. Reports, 48:53-229. Dong, X., et al. (2010). Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Anal. Chem., 82: 6208–6214. Emsley, J. et al. (1993). Microwave chemistry. ChemMatters December. Amer. Chem. Soc., p6. Gao, Y., et al. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid. Interface Sci., 368: 540-546. Giguere, R.J., et al. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 27: 4945-4949. Geim, A.K., et al. (2007). The rise of graphene. Nat. Mater., 6: 183-191. Hafajee, Z.A., et al. (2004). Ultra-rapid microwave-stimulated tissue processing with a modified protocol incorporating microwave fixation. Pathology., 36: 325-329. Hwang, D.R., et al. (1987). Application of microwave technology to the synthesis of short-lived radiopharmaceuticals. J. Chem. Soc.,Chem. Commun., 23: 1799-1801. Hua, L., et al. (2005). Microwave-assisted specific chemical digestion for rapid protein identification. Proteomics, 6: 586–591. Jia, X., et al. (2011). Graphene edges: a review of their fabrication and characterization. Nanoscale., 3: 86-95. Karas, M., et al. (1985). Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem., 57: 2935–2939. Karas, M., et al. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem., 60: 2299–2301. Kinumi, T., et al. (2000). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J. Mass Spectrom., 35: 417-422. Kim, J.K., et al. (1996). Application of microwave irradiation techniques for the knoevenagel condensation. Synth. Commun., 26: 535-542. Lee, C., et al. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321: 385-388. Lee, K.H., et al. (2007). Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass Spectrom., 21: 2023-2030. Liu, J.C., et al. (2008). Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4/Al2O3 magnetic nanoparticles. Anal. Chem., 80: 5425-5432. Loupy, A., et al. (1993). The synthesis of esters under microwave irradiation using dry-media conditions. Can. J. Chem., 71: 90-95. Mavrogianopoulos, G.N., et al. (2000). Enegry efficient soil disinfestation by microwaves. J. Agr. Eng. R., 75: 149-153. Morozov, S.V., et al. (2008). Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett., 100: 016602. Nair, R.R., et al. (2008). Fine structure constant defines visual transparency of graphene. Science, 320: 1308. Novoselov, K.S., et al. (2004). Electric field fffect in atomically thin carbon films. Science, 306: 666-669. Novoselov, K.S., et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438: 197–200. Peterson, D.S., et al. (2007). Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom. Rev., 26: 19-34. Rajh, T., et al. (2002). Surface restructuring of nanoparticles: an efficient route for ligand-metal oxide crosstalk. J. Phys. Chem., 106: 10543-10552. Spengler, B. et al. (1997). Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J. Mass Spectrom., 32: 1019-1036. Suckau, D., et al. (2003). A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal Chem., 376: 952-965. Sun, W., et al. (2006). Microwave-assisted protein preparation and enzymatic digestion in proteomics. Mol Cell Proteomics., 5: 769–776. Sunner, J., et al. (1995). Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem., 67: 4335-4342. Tanaka, K., et al. (1988). Protein and polymer analysis up to m/z 100000 by laser ionization. Rapid commun. Mass Spectrom., 2: 151-153. Tang, L.A., et al. (2010). Graphene-Based SELDI Probe with Ultrahigh Extraction and Sensitivity for DNA Oligomer. J. Am. Chem. Soc., 132: 10976-10977. Thomson, J.J., et al. (1913). Rays of positive electricity and their application to Chemical analysis. Longmans, London. Vesper, H.W., et al. (2005). Assessment of microwave-assisted enzymatic digestion by measuring glycated hemoglobin A1c by mass spectrometry. Rapi. Commun. Mass Spectrom., 19: 2865–2870. Wei, J., et al. (1999). Desorption/ionization mass spectrometry on porous silicon. Nature, 399: 243-246. Yu, J., et al. (2002). Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films. J. Sol-gel Sci. Technol., 24: 39-48. Zenobi, R., et al. (1998) Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev., 17: 337-366. Zhu, Y., et al. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22: 3906-3924. 第二章 參考論文 陳玉如 (2003). 質譜技術與蛋白質體學. 醫藥基因生物技術教學資源中心. Biemann, K., et al. (1988). Contributions of mass spectrometry to peptide and protein structure. Biomed. Environ. Mass Spectrom., 16: 99-111. Blume-Jensen P.H., et al. (2001). Oncogenic kinase siganlling. Nature, 411: 355-65. Bose, A.K., et al. (1997). More chemistry in a microwave. Chemtech., 27: 18 -24. Chen, C.T., et al. (2007). Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J. Proteome Res., 6: 316-325. Chen, S.Y., et al. (2011). Magnetic iron oxide nanoparticle enrichment of phophopeptides on a radiate microstructure MALDI chip. Analyst, 136: 4454-4459. Cleveland, D.W., et al. (1977). Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem., 252: 1102-1106. Doucette, A., et al. (2000). Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptides mass mapping of proteins from dilute solutions. Anal. Chem., 15: 3355-3362. Giguere, R. J., et al. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 27: 4945-4949. Hart, S.R., et al. (2002). Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOF MS. J. Am. Soc. Mass Spectrom., 13: 1042-1051. Henzel, W.J., et al. (1993). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. U S A, 90: 5011-5015. Hunter, T. et al. (2000). Signaling--2000 and beyond. Cell, 100: 113-127. Karas, M., et al. (1985). Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem., 57: 2935–2939. Kim, J., et al. (2004). Improved detection of multi-phosphorylated peptides in the presence of phosphoric acid in liquid chromatography/mass spectrometry. J. Mass Spectrom., 39: 208-15. Kosmulski, M., et al. (2002). The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid. Interface Sci., 99: 255-264. Lander, E.S., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409: 860-921. Larsen, M.R., et al. (2005). Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteomics., 4: 873-886. Lee, A., et al. (2008). Enrichment of phosphopeptides using bare magnetic particles. Rapid Commun. Mass Spectrom., 22: 2561-2564. Li, Y., et al. (2007). On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis. Proteomics, 7: 3661-3671. Li, Y., et al. (2008). Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem. Commun. (Camb)., 7: 564-566. Lin, H.Y. et al. (2009). Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment form complex samples for MALDI MS analysis. Anal. Bioanal Chem., 394: 2129-2136. Lill, J.R., et al. (2007).Microwave-assisted proteomics. Mass Spectrom. Rev. 26: 657–671. Lo, C.Y., et al. (2007). Rapid enrichment of phosphopeptides from tryptic digest of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. J. Proteome Res., 6: 887-893. Pike, L.J., et al. (2004). Proteomics, genomics and the future of medical education. Mo. Med., 101: 496-499. Porath, J., et al. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 258: 598-599. Roepstorff, P., et al. (1984). Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass. Spectrom., 11: 601. Ryle, A.P., et al. (1955). Disulphide interchange reactions. Biochem. J., 60: 535-540. Santos, H.M. et al. (2013). On-target ultrasonic digestion of proteins. Proteomics, 13: 1423-1427. Sangerm F. et al. (1953). A disulphide interchange reaction. Nature, 171: 1025-1026. Sun, W., et al. (2006). Microwave-assisted protein preparation and enzymatic digestion in proteomics. Mol Cell Proteomics., 5: 769–776. Tan, F., et al. (2008). Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J. Proteome Res., 3: 1078-1087. Tanaka, K., et al. (1988). Protein and polymer analysis up to m/z 100000 by laser ionization. Rapid commun. Mass Spectrom., 2: 151-153. Takman, P.A.,et al. (2007). High-resolution compact X-ray microscopy. J. Microscopy, 226: 175-181. Venter, J.C., et al. (2001). The sequence of the human genome. Science, 291: 1304-1351. Vogl, T., et al. (1999). Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 10: 1124-1130. Wang, S., et al. (2008). Infrared-assisted on-plate proteolysis for MALDI-TOF-MS peptide mapping. Anal. Chem., 80: 5640-5647. Wasinger, V.C., et al. (1995). Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 16: 1090-1094. Yamashita, M., et al. (1984) Electrospray ion source: another variation on the free-jet theme. J. Phy. Chem., 88: 4451-4459. Zhao, L., et al. (2008). The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. J. Am. Soc. Mass Spectrom., 19: 1176-1186. Zhou, W., et al. (2000). Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 11: 273-282. Zolnierowicz, S., et al. (2000). Protein phosphorylation and protein phosphatases. De Panne, Belgium, September 19-24, 1999. EMBO J., 19: 483-488. 第三章 參考論文 第六節 參考文獻 Bose, A.K., et al. (1997). More chemistry in a microwave. Chemtech., 27: 18 -24. Bushman, J.L. et al. (1998). Green tea and cancer in humans: a review of the literature. Nutr. Cancer, 31: 151-159. Castro, J., et al. (2010). Determination of catechins and caffeine in proposed green tea standard reference materials by liquid chromatography-particle beam/electron ionization mass spectrometry (LC-PB/EIMS). Talanta, 82: 1687-1695. Chen, W.T., et al. (2013). Tea identification through surface-assisted laser desorption/ionization mass spectrometry. IJAMSC., 1: 11-21. Dong, J., et al. (2011). Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Funct., 2: 310-319. Dreosti, I.E. et al. (1996). Bioactive ingredients: antioxidants and polyphenols in tea. Nutr. Rev., 54: S51-58 Dou, J., et al. (2008). Rapid identification of acylated flavonol tetraglycosides in oolong teas using HPLC-MSn. Phytochem. Anal., 19: 251-257. Dou, J., et al. (2007). Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. J Agric. Food Chem., 55:7462-7468. Gao, Y., et al. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid. Interface Sci., 368: 540-546. Han, L.K., et al. (1999). Anti-obesity action of oolong tea. Int. J. Obes. Relat. Metab. Disord., 23: 98-105. Harris, C.S., et al. (2007). A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem. Anal., 18: 161-169 Hosoda, K., et al. (2003). Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care., 26: 1714-1718. Lee, K.H., et al. (2007). Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass Spectrom., 21: 2023-2030. Ishida, H., et al. (2009). A and B in tea leaves and isolation of prechafurosides A and B from oolong tea leaves. J. Agric. Food Chem., 57: 6779-6786. Kuroda, Y., et al. (1999). Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res., 436: 69-97. Pan, M.H., et al. (2000). Induction of apoptosis by the oolong tea polyphenol theasinensin A through cytochrome c release and activation of caspase-9 and caspase-3 in human U937 cells. J. Agric. Food Chem., 48: 6337-6346. Mak, J.C. et al. (2012) Potential role of green tea catechins in various disease therapies: progress and promise. Clin. Exp. Pharmacol. Physiol., 39: 265-273. Nielsen, S.E., et al. (2003). Simultaneous determination of hydroxycinnamates and catechins in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 787: 369-379. Rajh, T., et al. (2002). Surface restructuring of nanoparticles: an efficient route for ligand-metal oxide crosstalk. J. Phys. Chem., 106: 10543-10552. Shen, D., et al. (2006). Determination of the predominant catechins in Acacia catechu by liquid chromatography/electrospray ionization-mass spectrometry. J. Agric. Food Chem., 54: 3219-3224. Tang, L.A., et al. (2010). Graphene-Based SELDI Probe with Ultrahigh Extraction and Sensitivity for DNA Oligomer. J. Am. Chem. Soc., 132: 10976-10977. Wang, Y., et al. (2013). Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components. BMC Res. Notes, 6: 143. Wei, H., et al. (1999). Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green tea and black tea. Free Radic. Biol. Med., 22:1427-1438. Xia, G., et al. (2014). Simultaneous preparation of naturally abundant and rare catechins by tannase-mediated biotransformation combining high speed counter current chromatography. Food Chemistry, 151: 380-384. Yang, C.S., et al. (1993). Tea and cancer. J. Natl. Cancer Inst., 85: 1038-1049. Yang, T.T., et al. (1997). Hypocholesterolemic effects of Chinese tea. Pharmacol. Res., 35: 505-512. Zhang, K., et al. (2004). GC-MS determination of flavonoids and phenolic and benzoic acids in human plasma after consumption of cranberry juice. J. Agric. Food Chem., 52: 222-227. Zhou, L.H., et al. (2009). A binary matrix for improved detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom., 23: 2264-2272. Zhu, Q., et al. (2009). Trapping effects of green and black tea extracts on peroxidation-derived carbonyl substances of seal blubber oil. J. Agric. Food Chem., 57: 1065-1069.
摘要: 
The aim of this research is to develop a rapid and simple platform by using microwave-based mass spectrometry analysis. The first part, we developed a novel microwave-assisted protein preparation and digestion method for MALDI-TOF-MS analysis and identification of proteins that involves using conductive carbon tape as a sample platform for sample preparation (reduction and alkylation) and digestion under microwave heating and as a plate for MALDI analysis. This method allows for the enzymatic digestion products of proteins to be directly analyzed by MALDI MS and results in a marked reduction in sample loss. Our protocol requires only a small volume (1 μL) of reaction solvent, which increases the frequency of enzyme-to-protein contact, thereby resulting in more efficient digestion of sample than conventional in-solution digestion methods. To test this protocol, we used magnetic iron (II, III) oxide nanoparticles as concentrating probes to enrich phosphopeptides from a mixture of peptides in enzymatically digested protein samples. In only 15 min, the combination of one-pot on-tape-based protein preparation and digestion under microwave heating with the on-tape-based enrichment method not only dramatically reduced the time required for phosphopeptide analysis but also allowed for the simultaneous identification of phosphoproteins.
The second part, we describe a novel method for rapid determination of catechins using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) that involves using titanium dioxide nanoparticles (TiO2 NPs) – graphene flakes (GF) mixture as concentration probes and matrices and under microwave heating. We note that TiO2 has better ability to concentrate catechins, and GF has higher desorption/ionization efficiency for SALDI-MS analysis of catechins. The using TiO2 NPs-GF mixture as matrices provide a number of advantages over TiO2 or GF alone, including higher desorption/ionization efficiency, enhance enrichment ability, and reduces analysis time (less 10 min). Furthermore, this approach can be used for simultaneous qualitation and quantitation for four catechins, including (+)-catechin (C), (–)-epigallocatechin (EGC), (–)-epigallocatechin gallate (EGCG), and (–)-epicatechin gallate (ECG) in tea samples that had not been subjected to any sample preparation procedures.

本研究主要目的是利用微波技術搭配質譜術發展快速分析生物分子之質譜平台。第一部分以導電性碳膠帶結合微波輔助進行樣品前處理及酵素消化,並搭配具高準確性、高靈敏度、樣品需求量少、操作快速簡單等優點之基質輔助雷射脫附游離飛行時間質譜儀 (Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, MALDI-TOF MS) 進行分析,成功建立一套快速且高效率之 on-tape 微波輔助樣品處理及酵素消化反應之平台,使樣品反應體積縮小至 1 μL,並減少樣品因操作過程所產生的流失率,大幅提高蛋白鑑定的序列涵蓋率,整體分析時間可在十分鐘之內完成。進一步以此樣品處理方法搭配 Fe3O4 奈米磁性粒子發展一套快速分析磷酸化蛋白之質譜平台,整體實驗時間在 15 分鐘之內即可完成,且可有效的從稀釋 1,000 倍的市售脫脂牛奶中鑑定到 α- 及 β- caseins 的磷酸化胜肽訊號。
第二部分以微波技術結合二氧化鈦奈米粒子-石墨烯雙基質系統發展快速鑑定茶葉中兒茶素類化合物之表面輔助雷射脫附游離質譜術 (Surface-assisted laser desorption/ionization mass spectrometry, SALDI-MS) 平台。探討石墨烯及二氧化鈦奈米粒子在樣品處理及分析過程中所扮演的角色。結果顯示,二氧化鈦奈米粒子主要扮演濃縮兒茶素類化合物之角色;石墨烯具有較佳的樣品脫附游離效率。結合此兩種材料進行兒茶素樣品處理及質譜分析,可得到比各自單獨使用時更好的樣品脫附游離效果,且在微波輔助下,可加速樣品濃縮效率,使整體分析時間只需要 10 分鐘之內即可完成,並可有效地對茶葉樣品中之 (+)-catechin、(-)-epicatechin gallate (ECG)、(-)-epigallocatechin (EGC),以及 (-)-epigallocatechin gallate (EGCG) 等兒茶素類化合物進行定性及初步量化分析。
URI: http://hdl.handle.net/11455/92230
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:分子生物學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7095055012-1.pdf5.52 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.