Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92246
DC FieldValueLanguage
dc.contributorJeremy J.W. Chenen_US
dc.contributor陳健尉zh_TW
dc.contributor.author陳彥鈞zh_TW
dc.contributor.authorYen-Chun Chenen_US
dc.contributor.other分子生物學研究所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-15T05:39:04Z-
dc.identifier.citation衛生福利部。(2014)。 102年死因統計結果分析(公告)。http://www.mohw.gov.tw/MOHW_Upload/doc/民國102年主要死因分析_0045347003.doc. 中央研究院分子生物研究所RNAi核心設施。(2007)。TRC protocol: Lentivirus infection V4。http://rnai.genmed.sinica.edu.tw/file/protocol/ 3_LentivirusInfectionV4.pdf A. Prado, I. Ramos, L. J. Frehlick, A. Muga, and J. Ausi ? o. (2004). 'Nucleoplasmin: a nuclear chaperone,' Biochemistry and Cell Biology. 82(4) 437–445. Ahn JY, Liu X, Cheng D, Peng J, Chan PK, Wade PA, Ye K. (2005). Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell.18(4):435-45. Arendt BK, Walters DK, Wu X, Tschumper RC, Jelinek DF. (2014). Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget. Birnboim HC, Doly J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7(6):1513-23. Bizzarri M, Cucina A. (2014).Tumor and the Microenvironment: A Chance to Reframe the Paradigm of Carcinogenesis? Biomed Res Int. 2014:1-9 Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-54. Blum M. (2005). Clinical Presentation of Lung Cancer. In: Shields TW (ed) General Thoracic Surgery. Philadelphia, 1508-17. Bollen M, Peti W, Ragusa MJ, Beullens M.(2010). The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci. 35(8):450-8. Bonifacino JS, Dell'Angelica EC, Springer TA. (2001). Immunoprecipitation. Curr Protoc Mol Biol. Chapter 10:Unit 10.16. Burnette WN. (1981). 'Western blotting': electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 112(2):195-203. Ca?adas I, Taus A, Gonz?lez I, Villanueva X, Gimeno J, Pijuan L, D?mine M, S?nchez-Font A, Vollmer I, Men?ndez S, Arp? O, Mojal S, Rojo F, Rovira A, Albanell J, Arriola E. (2014). High circulating hepatocyte growth factor levels associate with epithelial to mesenchymal transition and poor outcome in small cell lung cancer patients. Int. J. Cancer. 132: 1977–1985. Cassinelli G, Zuco V, Gatti L, Lanzi C, Zaffaroni N, Colombo D, Perego P. (2013). Targeting the Akt kinase to modulate survival, invasiveness and drug resistance of cancer cells. Curr Med Chem. 20(15):1923-45. Chang CH, Hsiao CF, Yeh YM, Chang GC, Tsai YH, Chen YM, Huang MS, Chen HL, Li YJ, Yang PC, Chen CJ, Hsiung CA, Su WC. (2013). Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int J Cancer. 132(9):1977-85. Chang TP, Yu SL, Lin SY, Hsiao YJ, Chang GC, Yang PC, Chen JJ. (2010). Tumor suppressor HLJ1 binds and functionally alters nucleophosmin via activating enhancer binding protein 2α complex formation. Cancer Res. 70(4):1656-67. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, Wu CW. (1997) . Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 17(3):353-60. Cohen P.(2000). The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci. 25(12):596-601. Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC, Helin K, Falini B, Pelicci PG. (2005). Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol. 25(20):8874-86. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG. (2002). Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol. 4(7):529-33. Constantinos G. Broustas and Howard B. Lieberman. (2014). DNA Damage Response Genes and the Development of Cancer Metastasis. Radiation Research. 181(2):111-130. D'Agostino L, Caracciolo V, Giordano A. (2010). NSP 5a3a's link to nuclear-cyto proteins B23 and hnRNP-L between normal and aberrant breast cell lines. Cell Cycle. 9(6):1131-42. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-thro Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 33(2):95-103. Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S, Nicoletti I. (2008) Altered Nucleophosmin transport in acure myeloid leukemia with mutated NPM1: molecular basis and clinical implications. Leukemia. 23: 1731-1743. Falini B, Nicoletti I, Bolli N, Martelli MP, Liso A, Gorello P, Mandelli F, Mecucci C, Martelli MF. (2007). Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica. 92(4):519-32. Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S, Nicoletti I. (2009). Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia. 23(10):1731-43. Flores-Delgado G, Liu CW, Sposto R, Berndt N. (2007). A limited screen for protein interactions reveals new roles for protein phosphatase 1 in cell cycle control and apoptosis. J Proteome Res. 6(3):1165-75. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. (2006). Clonogenic assay of cells in vitro. Nat Protoc. 1(5):2315-9. Frehlick LJ, Eir?n-L?pez JM, Ausi? J. (2007). New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays. 29(1):49-59. Fresu M, Bianchi M, Parsons JT, Villa-Moruzzi E. (2001). Cell-cycle-dependent association of protein phosphatase 1 and focal adhesion kinase. Biochem J. 358(Pt 2):407-14. Fritschy JM, H?rtig W. (2001). Immunofluorescence. ELS. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. (2004). Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 145(12):5439-47. Gao H, Jin S, Song Y, Fu M, Wang M, Liu Z, Wu M, Zhan Q. (2005). B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem. 280(12):10988-96. Garcia A, Cayla X, Guergnon J, Dessauge F, Hospital V, Rebollo MP, Fleischer A, Rebollo A. (2003). Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie. 85(8):721-6. Geetha T, Langlais P, Caruso M, Yi Z. (2012). Protein phosphatase 1 regulatory subunit 12A and catalytic subunit δ, new members in the phosphatidylinositide 3 kinase insulin-signaling pathway. J Endocrinol. 214(3):437-43. Grassie ME, Moffat LD, Walsh MP, MacDonald JA.(2011). The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Arch Biochem Biophys. 510(2):147-59 Gurumurthy M, Tan CH, Ng R, Zeiger L, Lau J, Lee J, Dey A, Philp R, Li Q, Lim TM, Price DH, Lane DP, Chao SH.(2008). Nucleophosmin interacts with HEXIM1 and regulates RNA polymerase II transcription. J Mol Biol. 378(2):302-17. Heist RS, Sequist LV, Engelman JA.(2012). Genetic changes in squamous cell lung cancer: a review. J Thorac Oncol. 7(5):924-33. Hewitt HB, Blake ER. Stability of transplanted murine tumour systems after storage of cells at -196 degrees C for up to 13 years. Br J Cancer. 37(5):718-22. Hsu T, Hsu CH, Lee KH, Lin JT, Chen CS, Chang KC, Su CY, Hsiao M, Lu PJ. (2014). MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis.3:e99. Huang T, Xiong YZ, Lei MG, Xu DQ, Deng CY. (2006). Identification of a differentially expressed gene PPP1CB between porcine Longissimus dorsi of Meishan and Large WhitexMeishan hybrids. Acta Biochim Biophys Sin (Shanghai). 38(7):450-6. Hung PF, Hong TM, Hsu YC, Chen HY, Chang YL, Wu CT, Chang GC, Jou YS, Pan SH, Yang PC. (2013). The motor protein KIF14 inhibits tumor growth and cancer metastasis in lung adenocarcinoma. PLoS One. 8(4):e61664. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y. (2003). Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell. 12(5):1151-64. Jackson V. (1978). Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell. 15(3):945-54. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. (2011). Global cancer statistics. CA Cancer J Clin. 61(2):69-90. Kerr LE, Birse-Archbold JL, Short DM, McGregor AL, Heron I, Macdonald DC, Thompson J, Carlson GJ, Kelly JS, McCulloch J, Sharkey J. (2007). Nucleophosmin is a novel Bax chaperone that regulates apoptotic cell death. Oncogene. 26(18):2554-62. Koh CM. (2013). Storage of bacteria and yeast. Methods Enzymol. 533:15-21. Koike A, Nishikawa H, Wu W, Okada Y, Venkitaraman AR, Ohta T. (2010). Recruitment of phosphorylated NPM1 to sites of DNA damage through RNF8-dependent ubiquitin conjugates. Cancer Res. 70(17):6746-56. Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M, Watari H, Mitamura T, Hosaka M, Hanley SJ, Kudo M, Sakuragi N. (2014). MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget. Krause A, Hoffmann I. (2010). Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication. PLoS One. 5(3):e9849. Kular RK, Yehiely F, Kotlo KU, Cilensek ZM, Bedi R, Deiss LP. (2009). GAGE, an antiapoptotic protein binds and modulates the expression of nucleophosmin/B23 and interferon regulatory factor 1. J Interferon Cytokine Res. 29(10):645-55. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M. (2004). Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell. 5(5):465-75. Lee YH, Liao YC, Liao WY, Shun SC, Liu YC, Chan JC, Yu CJ, Yang PC, Lai YH. (2013). Anxiety, depression and related factors in family caregivers of newly diagnosed lung cancer patients before first treatment. Psychooncology. 22(11):2617-23. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2(2):329-33. Lin CY, Tan BC, Liu H, Shih CJ, Chien KY, Lin CL, Yung BY. (2010). Dephosphorylation of nucleophosmin by PP1β facilitates pRB binding and consequent E2F1-dependent DNA repair. Mol Biol Cell. 21(24):4409-17. Lin X, Afsari B, Marchionni L, Cope L, Parmigiani G, Naiman D, Geman D.(2009). The ordering of expression among a few genes can provide simple cancer biomarkers and signal BRCA1 mutations. BMC Bioinformatics. 10:256. Lindstr?m MS.(2011). NPM1/B23: AMultifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int. 2011:195209. Liu H, Tan BC, Tseng KH, Chuang CP, Yeh CW, Chen KD, Lee SC, Yung BY. (2007). ucleophosmin acts as a novel AP2α-binding transcriptional corepressor during cell differentiation. EMBO Rep. 8(4):394-400. Lu Z, Wan G, Guo H, Zhang X, Lu X. (2013). Protein phosphatase 1 inhibits p53 signaling by dephosphorylating and stabilizing Mdmx. Cell Signal. 25(4):796-804. Marshall J. (2011). Transwell(?) invasion assays. Methods Mol Biol. 769:97-110. Meder VS, Boeglin M, de Murcia G, Schreiber V. (2005). PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci. 118(Pt 1):211-22. Mittnacht S. (1998). Control of pRB phosphorylation. Curr Opin Genet Dev. 8(1):21-7. Moorhead G, Johnson D, Morrice N, Cohen P. (1998). The major myosin phosphatase in skeletal muscle is a complex between the β-isoform of protein phosphatase 1 and the MYPT2 gene product. FEBS Lett. 438(3):141-4. Mortensen RM, Kingston RE. Selection of transfected mammalian cells. (2009). Curr Protoc Mol Biol. Chapter 9:Unit9.5. Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 65(1-2):55-63. Moutasim KA, Nystrom ML, Thomas GJ. (2011). Cell migration and invasion assays. Methods Mol Biol. 731:333-43. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 51 Pt 1:263-73. Okuwaki M, Sumi A, Hisaoka M, Saotome-Nakamura A, Akashi S, Nishimura Y, Nagata K. (2012). Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodeling. Nucleic Acids Res. 40(11):4861-78. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M.(2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 127(3):635-48. Pang Q, Christianson TA, Koretsky T, Carlson H, David L, Keeble W, Faulkner GR, Speckhart A, Bagby GC. (2003). Nucleophosmin interacts with and inhibits the catalytic function of eukaryotic initiation factor 2 kinase PKR. J Biol Chem. 278(43):41709-17. Park EK, Takahashi K, Jiang Y, Movahed M, Kameda T. Elimination of asbestos use and asbestos-related diseases: an unfinished story. (2012). Cancer Sci. 103(10):1751-5. Parra M, Mahmoudi T, Verdin E. (2007). Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev .21(6):638-43. Peti W, Nairn AC, Page R.(2013). Structural basis for protein phosphatase 1 regulation and specificity.FEBS J. 280(2):596-611. Prieto C, Saperas N, Arnan C, Hills MH, Wang X, Chiva M, Aligu? R, Subirana JA, Ausi? J. (2002). Nucleoplasmin interaction with protamines. Involvement of the polyglutamic tract. Biochemistry. 41(24):7802-10. Raymond S, Weintraub L. (1959). Acrylamide gel as a supporting medium for zone electrophoresis. Science. 130(3377):711. Renzette N. (2011). Generation of Transformation Competent E. coli. Curr Protoc Mol Biol. Ruggero D, Pandolfi PP. (2003). Does the ribosome translate cancer? Nat Rev Cancer. 3(3):179-92. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239(4839):487-91. Sakashita S, Sakashita M, Sound Tsao M. (2014). Genes and pathology of non-small cell lung carcinoma. Semin Oncol. 41(1):28-39. Scotto-Lavino E, Garcia-Diaz M, Du G, Frohman MA. (2010). Basis for the isoform-specific interaction of myosin phosphatase subunits protein phosphatase 1c β and myosin phosphatase targeting subunit 1. J Biol Chem. 285(9):6419-24. Shackelford RE, Vora M, Mayhall K, Cotelingam J. (2014). ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer. 5(1-2):1-14. Sharpless NE. (2005). INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res. 576(1-2):22-38. Skinner JA, Saltiel AR. (2001). Cloning and identification of MYPT3: a prenylatable myosin targetting subunit of protein phosphatase 1. Biochem J. 2001 356(Pt 1):257-67. Song G, Ouyang G, Bao S. (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 9(1):59-71. Sun D, Zhou M, Kowolik CM, Trisal V, Huang Q, Kernstine KH, Lian F, Shen B.(2011). Differential expression patterns of capping protein, protein phosphatase 1, and casein kinase 1 may serve as diagnostic markers for malignant melanoma. Melanoma Res. 21(4):335-43. Susana R. Pereira, V?tor M. Vasconcelos, and Agostinho Antunes.The phosphoprotein phosphatase family of Ser/Thr phosphatases as principal targets of naturally occurring toxins. Crit Rev Toxicol. 41(2):83-110. Swanhart LM, Sanders AN, Duronio RJ. (2007). Normal regulation of Rbf1/E2f1 target genes in Drosophila type 1 protein phosphatase mutants. Dev Dyn. 236(9):2567-77. Takemura M, Sato K, Nishio M, Akiyama T, Umekawa H, Yoshida S. (1999). Nucleolar protein B23.1 binds to retinoblastoma protein and synergistically stimulates DNA polymerase α activity. J Biochem. 125(5):904-9. Tamrakar S, Rubin E, Ludlow JW. (2000). Role of pRB dephosphorylation in cell cycle regulation. Front Biosci. 5:D121-37. Tan I, Ng CH, Lim L, Leung T. (2001). Phosphorylation of a novel myosin binding subunit of protein phosphatase 1 reveals a conserved mechanism in the regulation of actin cytoskeleton. J Biol Chem. 276(24):21209-16. Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G. (2013). Zymography methods for visualizing hydrolytic enzymes. Nat Methods. 10(3):211-20. Velusamy T, Palanisamy N, Kalyana-Sundaram S, Sahasrabuddhe AA, Maher CA, Robinson DR, Bahler DW, Cornell TT, Wilson TE, Lim MS, Chinnaiyan AM, Elenitoba-Johnson KS.(2013). Recurrent reciprocal RNA chimera involving YPEL5 and PPP1CB in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 110(8):3035-40. Weiss B, Jacquemin-Sablon A, Live TR, Fareed GC, Richardson CC. (1968). Enzymatic breakage and joining of deoxyribonucleic acid. VI. Further purification and properties of polynucleotide ligase from Escherichia coli infected with bacteriophage T4. J Biol Chem. 243(17):4543-55. Winter SL, Bosnoyan-Collins L, Pinnaduwage D, Andrulis IL.(2007). The interaction of PP1 with BRCA1 and analysis of their expression in breast tumors. BMC Cancer. 7:85. Wu X, Wang L, Ye Y, Aakre JA, Pu X, Chang GC, Yang PC, Roth JA, Marks RS, Lippman SM, Chang JY, Lu C, Deschamps C, Su WC, Wang WC, Huang MS, Chang DW, Li Y, Pankratz VS, Minna JD, Hong WK, Hildebrandt MA, Hsiung CA, Yang P. (2013). Genome-wide association study of genetic predictors of overall survival for non-small cell lung cancer in never smokers. Cancer Res. 73(13):4028-38. Xia D, Stull JT, Kamm KE. (2005). Myosin phosphatase targeting subunit 1 affects cell migration by regulating myosin phosphorylation and actin assembly. Exp Cell Res. 304(2):506-17. Xiao J, Zhang Z, Chen GG, Zhang M, Ding Y, Fu J, Li M, Yun JP. (2009). Nucleophosmin/B23 interacts with p21WAF1/CIP1 and contributes to its stability. Cell Cycle. 8(6):889-95. Yao Z, Duan S, Hou D, Wang W, Wang G, Liu Y, Wen L, Wu M. (2010). B23 acts as a nucleolar stress sensor and promotes cell survival through its dynamic interaction with hnRNPU and hnRNPA1. Oncogene. 29(12):1821-34. Yang PC, Luh KT, Wu R, Wu CW. Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. Am J Respir Cell Mol Biol. 7(2):161-71. Zipper H, Brunner H, Bernhagen J, Vitzthum F. (2004). Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 32(12):e103.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/92246-
dc.description.abstractProtein phosphorylation is crucial for carcinoma progression. PP1-β plays a dual rule as a tumor suppressor gene and an oncogene in different cancer types. PP1-β inhibits the tumorigenic ability of malignant melanoma and breast cancer, but it promotes cancer progression in chronic lymphocytic leukemia. The role of PP1-β in non-small cell lung carcinoma is still unknown. Therefore, we investigate the rule of PP1-β and the relation between PP1-β and HLJ1-NPM1 interaction. In our study, the expression of PP1-β in CL1-0 and A549 is higher than in CL1-5 cell line. Silencing PP1-β in CL1-0 and A549 cells inhibit cell invasion, migration, proliferation and colony formation. We discovered that silencing PP1-β down-regulates the binding ability of AP-2α to MMP-2 promoter and also enhance MMP-2 activity. However, silence of PP1-β enhances the interaction of HLJ1 and NPM1, but it is not the consequence of phosphoNPM1 at T199 by PP1-β. Moreover, silence of PP1-β does not change NPM1 distribution which modified the cell cytoskeleton. In conclusion, PP1-β plays an important role in non-small cell lung carcinoma.en_US
dc.description.abstract蛋白質的磷酸化對蛋白質在癌症的進程中是很重要的調控機轉, PP1家族調控大部分蛋白質的去磷酸化,其中PP1-β同時具有致癌基因以及抑癌基因兩種相反的角色:在黑色素瘤以及乳癌中是扮演著抑癌基因的角色,而在慢性淋巴白血病中卻是扮演著致癌基因的角色。但是PP1-β在肺癌中的角色卻還沒被定義,因此本研究是探討非小細胞肺癌中PP1-β的角色以及PP1-β對HLJ1-NPM1的相關機轉。在本研究中,PP1-β在CL1-0以及A549的表現量比CL1-5高,因此我們將PP1-β在CL1-0 以及A549肺癌細胞株中靜默,發現靜默PP1-β會抑制非小細胞肺癌的侵襲、移動、增生以及聚落形成的能力。在PP1-β相關機轉方面,我們使用染色質免疫沉澱以及膠質?譜實驗發現到靜默PP1-β會使得AP-2α對於MMP-2的啟動子結合能力下降而MMP-2的活性上升。我們又透過免疫共沉澱實驗及西方墨點法實驗觀察到靜默PP1-β能使NPM1和HLJ1的交互作用能力上升,但是卻和PP1-β對NPM1的T199位點磷酸化沒有直接的影響。也透過免疫螢光染色實驗觀察到PP1-β的靜默對NPM1的分布沒有影響,但是會使細胞骨架改變。由以上結果可以得知PP1-β對於非小細胞肺癌進程扮演著重要的角色。zh_TW
dc.description.tableofcontents中文摘要------------------------------------------------------------- i Abstract--------------------------------------------------------------- ii 目錄------------------------------------------------------------------- iii 實驗結果圖表目錄------------------------------------------------- iv 縮寫字對照表------------------------------------------------------- viii 第一章、緒論------------------------------------------------------ 1 第一節 前人研究----------------------------------------------------- 1 一、肺癌------------------------------------------------------------- 1 (一)肺癌的成因及症狀----------------------------------------- 1 (二)肺癌的分類------------------------------------------------- 2 (三)癌症轉移--------------------------------------------------- 3 二、PP1-β 蛋白----------------------------------------------------- 3 (一)PP1家族---------------------------------------------------- 3 (二)PP1-β 的功能及相關機轉--------------------------------- 4 (三)PP1-β 與癌症的關係--------------------------------------- 5 三、NPM1 蛋白----------------------------------------------------- 6 (一)NPM1的功能----------------------------------------------- 6 (二)NPM1與癌症的關係--------------------------------------- 7 第二節 研究目的及研究架構圖-------------------------------------- 8 第二章、實驗材料與方法------------------------------------------- 10 第一節 材料----------------------------------------------------------- 10 第二節 細胞株及細胞培養------------------------------------------- 10 一、細胞株----------------------------------------------------------- 10 二、細胞培養-------------------------------------------------------- 10 第三節 細胞冷凍保存及細胞解凍----------------------------------- 11 一、細胞冷凍保存--------------------------------------------------- 11 二、細胞解凍-------------------------------------------------------- 11 第四節 轉染作用----------------------------------------------------- 12 第五節 慢病毒屬感染------------------------------------------------ 12 第六節 加藥篩選建立穩定表現細胞株------------------------------ 13 第七節 聚合?連鎖反應---------------------------------------------- 13 第八節 DNA片段回收之純化與黏接反應--------------------------- 14 一、片段回收純化--------------------------------------------------- 14 二、黏接反應-------------------------------------------------------- 14 第九節 製備勝任細胞與轉型作用----------------------------------- 15 一、製備勝任細胞--------------------------------------------------- 15 二、轉型作用-------------------------------------------------------- 15 第十節 菌種甘油保存法---------------------------------------------- 16 第十一節 菌落聚合?連鎖反應-------------------------------------- 16 第十二節 大量質體萃取---------------------------------------------- 16 第十三節 細胞蛋白質之萃取與定量--------------------------------- 17 一、細胞蛋白質之萃取---------------------------------------------- 17 二、蛋白質定量------------------------------------------------------ 18 第十四節 免疫沉澱法------------------------------------------------ 18 第十五節 蛋白質凝膠電泳分析-------------------------------------- 19 第十六節 西方墨點法------------------------------------------------ 19 第十七節 細胞侵襲能力分析----------------------------------------- 20 第十八節 細胞遷移能力分析----------------------------------------- 21 一、傷口癒合試驗--------------------------------------------------- 21 二、透孔試驗-------------------------------------------------------- 21 第十九節 細胞聚落形成分析----------------------------------------- 22 第二十節 細胞存活試驗--------------------------------------------- 22 第二十一節 免疫螢光染色------------------------------------------- 23 第二十二節 染色質免疫沉澱分析----------------------------------- 23 第二十三節 即時定量PCR分析-------------------------------------- 24 第二十四節 條件培養液的製備-------------------------------------- 24 第二十五節 膠質?譜分析------------------------------------------- 25 第二十六節 統計分析------------------------------------------------ 25 第三章、實驗結果--------------------------------------------------- 26 第一節 在CL1-0及A549細胞株中PP1-β 的表現量比較多-------- 26 第二節 在CL1-0肺癌細胞株中建立了PP1-β基因靜默的穩定細胞株-------------------------------------------------------- 26 第三節 在A549肺癌細胞株中建立了PP1-β基因靜默的穩定細胞株--------------------------------------------------------- 27 第四節 CL1-0穩定靜默PP1-β細胞株的細胞侵襲能力下降------ 27 第五節 A549穩定靜默PP1-β細胞株的細胞侵襲能力下降------- 27 第六節CL1-0穩定靜默PP1-β細胞株的細胞移動能力下降------ 28 第七節 A549穩定靜默PP1-β細胞株的細胞移動能力下降------- 28 第八節 CL1-0穩定靜默PP1-β細胞株的細胞群落形成能力下降 29 第九節 A549穩定靜默PP1-β細胞株的細胞群落形成能力下降- 29 第十節 CL1-0穩定靜默PP1-β細胞株的細胞增生能力差異不大 29 第十一節 A549穩定靜默PP1-β細胞株的細胞增生能力下降---- 30 第十二節 CL1-0穩定靜默PP1-β細胞株中NPM1在T199位點磷酸化的表現量降低-------------------------------------- 30 第十三節 CL1-0穩定靜默PP1-β細胞株中HLJ1-NPM1交互作用能力上升------------------------------------------------- 30 第十四節 CL1-0穩定靜默PP1-β前後NPM1的皆分布於核仁--- 31 第十五節 CL1-0穩定靜默PP1-β細胞株中AP-2α對MMP-2啟動子結合能力稍微下降------------------------------------ 31 第十六節 CL1-0穩定靜默PP1-β細胞株中MMP-2的活性上升--- 31 第十七節 CL1-0穩定靜默PP1-β的細胞株中AKT蛋白表現量降低且A549穩定靜默PP1-β的細胞株中cyclin D1蛋白表現量上升--------- 32 第四章、 討論------------------------------------------------------ 33 第五章、 結論------------------------------------------------------ 38 實驗結果圖表目錄 圖一、在不同的肺癌細胞株中觀察PP1-β的表現量------------------ 39 圖二、在CL1-0將PP1-β穩定基因靜默------------------------------- 40 圖三、在A549將PP1-β穩定基因靜默-------------------------------- 41 圖四、CL1-0 穩定靜默PP1-β細胞株中細胞侵襲能力--------------- 42 圖五、A549 穩定靜默PP1-β細胞株中細胞侵襲能力---------------- 43 圖六、CL1-0 穩定靜默PP1-β細胞株中細胞移動能力--------------- 44 圖七、A549 穩定靜默PP1-β細胞株中細胞移動能力---------------- 45 圖八、CL1-0穩定靜默PP1-β細胞株中細胞移動能力---------------- 46 圖九、A549穩定靜默PP1-β細胞株中細胞移動能力----------------- 47 圖十、CL1-0 穩定靜默PP1-β細胞株中細胞聚落形成能力---------- 48 圖十一、A549穩定靜默PP1-β細胞株中細胞聚落形成能力--------- 49 圖十二、CL1-0穩定靜默PP1-β細胞株中細胞增生能力------------- 50 圖十三、A549穩定靜默PP1-β細胞株中細胞增生能力-------------- 51 圖十四、CL1-0穩定靜默PP1-β細胞株的NPM1蛋白質在T199胺基酸的磷酸化能力------------------------------------------ 52 圖十五、CL1-0穩定靜默PP1-β細胞株的HLJ1-NPM1交互作用能力------------------------------------------------------------ 53 圖十六、CL1-0穩定靜默PP1-β細胞株的NPM1分布---------------- 54 圖十七、CL1-0穩定靜默PP1-β細胞株的NPM1分布---------------- 55 圖十八、CL1-0穩定靜默PP1-β細胞株的NPM1分布---------------- 56 圖十九、CL1-0穩定靜默PP1-β細胞株的AP-2α對MMP-2啟動子的結合能力------------------------------------------------- 57 圖二十、CL1-0穩定靜默PP1-β細胞株的MMP-2活性--------------- 58 圖二十一、CL1-0及A549穩定靜默PP1-β細胞株的PP1-β相關蛋白分析--------------------------------------------------- 59 圖二十二、pEGFP-C3載體-------------------------------------------- 60 表一、相關引子序列表格--------------------------------------------- 61 附錄一---------------------------------------------------------------- 62 參考文獻-------------------------------------------------------------- 65zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2017-08-31起公開。zh_TW
dc.subject蛋白去磷酵素zh_TW
dc.subject肺癌zh_TW
dc.subjectPP1-βen_US
dc.subjectlung canceren_US
dc.titleThe study of functional role of protein phosphatase 1β in tumor progression of non-small cell lung carcinomaen_US
dc.title探討蛋白去磷酵素PP1-β於肺癌進程上之功能與角色zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2017-08-31zh_TW
dc.date.openaccess2017-08-31-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.languageiso639-1zh_TW-
item.fulltextwith fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
Appears in Collections:分子生物學研究所
Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7100055012-1.pdf3.11 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.