Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92249
標題: Metabolomics analysis of chlorophyll mutants in rice
水稻葉綠素突變株之葉片代謝體分析
作者: 陳麒仁
Chi-Ren Chen
關鍵字: 葉綠體;葉綠素;代謝體學;水稻;Metabolome;rice (Oryza sativa);chloroplast;chlorophyll
引用: Albinsky D., Kusano M., Higuchi M., Hayashi N., Kobayashi M., Fukushima A., Mori M., Ichikawa T., Matsui K., Kuroda H., Horii Y., Tsumoto Y., Sakakibara H., Hirochika H., Matsui M., Saito K. Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. Mol. Plant 2012. 3, 125–142. Arabidopsis Genome Initiative Analysis of the genomesequence of the ?owering plant Arabidopsis thaliana. Nature. 2000.408:796–815. Albinsky D., Kusano M., Higuchi M., Hayashi N., Kobayashi M., Fukushima A., Mori M., Ichikawa T., Matsui K., Kuroda H., Horii Y., Tsumoto Y., Sakakibara H., Hirochika H., Matsui M., Saito K. Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identi?cation of a gene-changing nitrogenmetabolism. Mol Plant. 2010a. 3:125–142. A.M. Fischer., Nutrient remobilization during leaf senescence. Senescence Processes in Plants. 2007. pp. 87–107. Ayumi Tanaka and Ryouichi Tanaka. Chlorophyll metabolism. Current Opinion in Plant Biology. 2006, 9:248–255. Boyes DC., Zayed AM., Ascenzi R., McCaskill AJ., Hoffman NE., Davis KR., G?rlach J.Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell .2001. 13, 1499–1510. Bouvier F., Rahier A., Camara B. Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 2005. 44:357–429. Baroli I., Niyogi KK. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. Philos Trans R Soc Lond B Biol Sci. 2000. 355:1385–93. Beale MH., Ward JL., Baker JM. Establishing substantial equivalence: metabolomics. Methods Mol Biol. 2009. 478:289–303. Baker JM., Hawkins ND., Ward JL., Lovegrove A., Napier JA., ShewryPR., Beale MH. A metabolomic study of substantialequivalence of ?eld-grown genetically modi?ed wheat. Plant Biotechnol J. 2006. 4:381–392. B. Kr?utler., S. H?rtensteiner. Chlorophyll catabolites and the biochemistry of chlorophyll breakdown. Chlorophylls and Bacteriochlorophylls Advances in Photosynthesis and Respiration. 2006. Volume 25, pp 237-260. Donald Voet, Judith G. Voet. Biochemistry. 2011. B. Kr?utler., S. Banala., S. Moser., C. Vergeine.r, T. M?lle.r, C. L?tz., A Holzinger. A novel blue ?uorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily (Spathiphyllum wallisii) and indicates a divergent path of chlorophyll breakdown. FEBS Lett. 2010. 584 ,4215–4221. Barding G.A., B?ni S., Fukao T., Bailey-Serres J., Larive C.K. Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress. J. Proteome Res. 2012. 12, 898–909. Chen W., Gong L., Guo Z., Wang W., Zhang H., Liu X., Yu S., Xiong L, Luo J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant. 2013. Cho K., Shibato J., Agrawal GK., Jung YH., Kubo A., Jwa N.S, Tamogami S., Satoh K., Kikuchi S., Higashi T., Kimura S., Saji H., Tanaka Y., Iwahashi H., Masuo Y., Rakwal R. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res. 2008. Jul;7(7):2980-98. Chan EK., Rowe HC., Kliebenstein DJ. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics. 2010. 185:991–1007. Catchpole GS., Beckmann M., Enot DP., Mondhe M., Zywicki B., Taylor J., Hardy N., Smith A., King RD., Kell DB., Fiehn O. Draper J. Hierarchical metabolomics demonstrates substantial com-positional similarity between genetically modi?ed and conven-tional potato crops. Proc Natl Acad Sci USA. 2005. 102:14458–14462. Consonni C., Bednarek P., Humphry M., Francocci F., Ferrari S., Harzen A., Ver Loren van Themaat E., Panstruga R. Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol. 2010. 152:1544–1561. Chang F. H. and J. H. Troughton. Chlorophyll a/b ratios in C 3 -C 4 –plants. Photosynthetica. 1972. 6:57-65. Demmig B., Bj?rkman O. Comparison of the effect of excessive light on chlorophyll ?uorescence (77K) and photon yield of O 2 evolution in leaves of higher plants. Planta. 1987. 171:171–84. Dixon RA, Strack D. Phytochemistry meets genome analysis, and beyond. Phytochemistry. 2003. 62:815–816. Dubey S., Misra P., Dwivedi S., Chatterjee S., Bag S., Mantri S., Asif M., Rai A., Kumar S., Shri M., et al. Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics. 2010. 11, 648. Christian Fufezan 1., Diana Simionato., Tomas Morosinotto. Identi?cation of key residues for pH dependent activation of violaxanthin de-epoxidase from Arabidopsis thaliana. PLoS O. 2012. Jean-Michel Davi?re and Patrick Achard. Gibberellin signaling in plants. DEVELOPMENT AT A GLANCE. 2013. 140, 1147-1151. Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol. 2003. 48:155–171. Fumagalli E., Baldoni E., Abbruscato P., Piffanelli P., Genga A., Lamanna R., Consonni R. NMR techniques coupled with multivariate statistical analysis: Tools to analyse Oryza sativa metabolic content under stress conditions. J. Agron. Crop Sci. 2009. 195, 77–88. Frank HA., Brudvig GW. Redox functions of carotenoids in photosynthesis. Biochemistry (Mosc). 2004. 43:8607–15. Goss R., Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res. 2010. 106:103–22. Fan T.W.M. In vivo and in vitro metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways. Rus. J. Plant Physiol. 2003. 50, 787–793. Hideg E., Schreiber U. Parallel assessment of ROS formation and photosynthesis in leaves by ?uorescence imaging. Photosynth Res. 2007. 92:103–8. Hendry G. A. F., Houghton J. D. and Brown S. B. The degradation of chlorophyll - a biological enigma. New Phytol. 1987. 107:255-302. International Rice Genome Sequencing Project The map-based sequence of the rice genome. Nature. 2005. 436:793–800. Ishikawa T., Takahara K., Hirabayashi T., Matsumura H., Fujisawa S., Terauchi R., Uchimiya H., Kawai-Yamada M. Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor bax inhibitor-1. Plant Cell Physiol. 2010. 51, 9–20. Jung ES., Lee S., Lim SH., Ha SH., Liu KH., Lee CH. Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Sci. 2013. Sep;210:61-9. Krishnaiah K., Varma N.G. Changing insect pest scenario in the rice ecosystem—A national perspective. Rice Knowl. Manag. Portal. 2011.1–28. Kusano M., Redestig H., Hirai T., Oikawa A., Matsuda F., Fukushima A., Arita M., Watanabe S., Yano M., Hiwasa-Tanase K., Ezura H., Saito K. Covering chemical diversity of genetically-modi?ed tomatoes using metabolomics for objective substantial equivalence assessment. PLoS ONE. 2011a. Konzak CF., Nilan RA., Kleinhofs A. Artificial mutagenesis as an aid in overcoming genetic vulnerability of crop plants. Basic Life Sci. 1976.Mar 1-7;8:163-77. Kim HK., Choi YH., Verpoorte R. NMR-based plant metabolo-mics: where do we stand, where do we go? Trends Biotechnol. 2011. Kakitani Y., Fujii R., Koyama Y., Nagae H., Walker L., Salter B., et al. Triplet-state conformational changes in 15-cis-spheroidene bound to the reaction center from Rhodobacter sphaeroides 2.4.1 as revealed by time-resolved EPR spectroscopy: strengthened hypothetical mechanism of triplet-energy dissipation. Biochemistry (Mosc). 2006. 45:2053–62. Kellogg BA., Poulter CD. Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol. 1997. 1:570–8. Kusano M., Jonsson P., Fukushima A., Gullberg J., Sj?str?m M., Trygg J., Moritz T. Metabolite signature during short-day induced growth cessation in populus. Front Plant Sci. 2011. 2, 29. Kueger S., Steinhauser D., Willmitzer L., Giavalisco P. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 2012. 70, 39–50. Kusano M., Tabuchi M., Fukushima A., Funayama K., Diaz C., Kobayashi M., Hayashi N., Tsuchiya YN., Takahashi H., Kamata A., Yamaya T., Saito K. Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice. Plant J. 2011b. 66:456–466. Kuzina V., Ekstrom CT., Andersen SB., Nielsen JK., Olsen CE., Bak S. Identi?cation of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolo-mic approach. Plant Physiol. 2009. 151:1977–1990. Koulman A., Lane GA., Harrison SJ., Volmer DA. From differentiating metabolites to biomarkers. Anal Bioanal Chem. 2009. 394:663–670. Kliebenstein D. Advancing genetic theory and application by metabolic quantitative trait loci analysis. Plant Cell. 2009. 21:1637–1646. Kusano M., Redestig H., Hirai T., Oikawa A., Matsuda F., Fukushima A., Arita M., Watanabe S., Yano M., Hiwasa-Tanase K., Ezura H., Saito K. Covering chemical diversity of genetically-modi?ed tomatoes using metabolomics for objective substantial equivalence assessment. PLoS ONE. 2011a. Kusano M., Fukushima A., Kobayashi M., Hayashi N., Jonsson P., Moritz T., Ebana K., Saito K. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J. Chromatogr. B. 2007. 855, 71–79. King J. The chlorophyll-deficient mutants. In: The Genetics Basic of Plant. Physiological Processes. 1991. pp.153-166. Le Gall G., Colquhoun IJ., Davis AL., Collins GJ., Verhoeyen ME. Metabolite pro?ling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modi?cation. J Agric Food Chem. 2003. 51:2447–2456. L.A.J. Mur., S. Aubry., M. Mondhe., A. Kingston-Smith., J. Gallagher., E. Timms-Taravella., C. James., I. Papp., S. H?rtensteiner., H. Thomas., H. Ougham. Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis. New Phytol. 2010. 161–174. Lukas Vaclavik., Anamika Mishra., Kumud B. Mishra., Jana Hajslova. Mass spectrometry-based metabolomic fingerprinting for screening cold tolerance in Arabidopsis thaliana accessions. Anal Bioanal Chem. 2013. 405:2671 – 2683. M. Oberhuber., J. Berghold., B. Kr?utler. Chlorophyll breakdown by a biomimetic route, Angew. Chem. Int. Ed. 2008. 47 3057–3061. M. Oberhuber., J. Berghold., K. Breuker., S. H?rtensteiner., B. Kr?utler. Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless 'non?uorescent' chlorophyll catabolites. Proc. Natl Acad. Sci. USA. 2003. 100,6910–6915. Mhamdi A., Mauve C., Gouia H., Saindrenan P., Hodges M., Noctor G. Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant Cell Environ. 2010. 33:1112–1123. Matsuda F., Hirai MY., Sasaki E., Akiyama K., Yonekura-Sakakibara K., Provart NJ., Sakurai T., Shimada Y., Saito K. AtMetExpress development: a phytochemical atlas of Arabidopsis develop- ment. Plant Physiol. 2010. 152:566–578. Marti G., Erb M., Boccard J., Glauser G., Doyen GR., Villard N., Robert CA., Turlings TC., Rudaz S., Wolfender JL. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant, Cell and Environment. 2013. 36, 621–639. Markwell, J. P., S. J. Danko., H. Bauwe., J. Osterman., H. J. Gorz., F. A. Haskins., A temperature-sensitive chlorophyll b-deficient mutant of sweetclover (Melilotus alba). Plant Physiol. 1986. 81:329-334 Martiskainen J., Kananavicius R., Linnanto J., Lehtivuori H., Keranen M., Aumanen V., et al. Excitation energy transfer in the LHC-II trimer: from carotenoids to chlorophylls in space and time. Photosynth Res. 2011. 107:195–207. Matsuda F., Hirai MY., Sasaki E., Akiyama K., Yonekura-Sakakibara K., Provart NJ., Sakurai T., Shimada Y., Saito K. AtMetExpress development: a phytochemical atlas of Arabidopsis development. Plant Physiol. 2012. 152, 566–578. M. Udayakumar., D. Prem Chandar., N. Arun., J. Mathangi., K. Hemavathi., R. Seenivasagam. PMDB: Plant Metabolome Database—A Metabolomic Approach Med. Chem Res. 2012. 21:47–52 Matile P., Hortensteiner S., Thomas, H., Krautler, B. Chlorophyll breakdown in senescent leaves. Plant Physiol. 1996. 112:1403-1409. Ma NL., Rahmat Z., Lam SS. A Review of the 'Omics' Approach to Biomarkers of Oxidative Stress in Oryza sativa. Int J Mol Sci. 2013. Apr 8;14(4):7515-41. Narsai,R., Howell, K.A., Carroll, A., Ivanova, A., Millar, A.H., Whelan, J. Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. Plant Physiol. 2009. 151, 306–322. OECD. An Introduction to the Food/Feed Safety Consensus Documents of the Task Force. Series on the Safety of Novel Foods and Feeds. 2006. Okazaki Y., Shimojima M., Sawada Y., Toyooka K., Narisawa T., Mochida K., Tanaka H., Matsuda F., Hirai A., Hirai MY., Ohta H., Saito K. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the ?rst step of sulfolipid biosynthesis. Plant Cell. 2009. 21:892–909. Okazaki Y., Kamide Y., Hirai MY., Saito K. Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-?ight mass spectrometry. Metabolomics (in press). Metabolomics. 2011. Mar;9:121-131. Peter Hedden and Andrew L. Phillips. Trends in Plant Science. Elsevier Science Ltd. 2000. December, Vol. 5, No. 12. Polivka T., Frank HA. Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 2010;43:1125–34. Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine. 1901. 2 (6): 559–572. Reiland S., Grossmann J., Baerenfaller K., Gehrig P., Nunes-Nesi A., Fernie AR., Gruissem W., Baginsky S. Integrated proteome and metabolite analysis of the de-etiolation process in plastids from rice (Oryza sativa L.). Proteomics. 2011 May;11(9):1751-63. Rose MT., Rose TJ., Pariasca-Tanaka J., Yoshihashi T., Neuweger H., Goesmann A., Frei M., Wissuwa M. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta. 2012 Oct;236(4):959-73. Rowe HC., Hansen BG., Halkier BA., Kliebenstein DJ. Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell. 2008. 20:1199–1216. Rao SR., Ford KL, Cassin AM., Roessner U., Patterson JH.., Bacic A. Proteomic and metabolic profiling of rice suspension culture cells as a model to study abscisic acid signaling response pathways in plants. J Proteome Res. 2010. Dec 3;9(12):6623-34. Ralston-Hooper K., Hopf A., Oh C., Zhang X., Adamec J. Development of GC9GC/TOF–MS metabolomics for use in ecotoxicological studies with invertebrates. Aquat Toxicol. 2008. 88:48–52. Ricroch AE., Berge JB., Kuntz M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and meta-bolomic pro?ling techniques. Plant Physiol. 2011.155:1752–1761. S. H?rtensteiner. Chlorophyll degradation during senescence, Annu. Rev. Plant Biol. 2006. 57,55–77. Sana, T. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics. 2010. 6, 451–465. Sreekumar A., Poisson LM., Rajendiran TM., Khan AP., Cao Q., Yu J., Laxman B., Mehra R., Lonigro RJ, Li Y., Nyati MK, Ahsan A., Kalyana-Sundaram S., Han B., Cao X., Byun J., Omenn GS., Ghosh D., Pennathur S., Alexander DC., Berger A., Shuster JR., Wei JT., Varambally S., Beecher C., Chinnaiyan AM. Metabolomic pro?les delineate potential role for sarcosine in prostate cancer progression. Nature . 2009. 457:910–914. Simon C., Langlois-Meurinne M., Bellvert F., Garmier M., Didierlau-rent L., Massoud K., Chaouch S., Marie A., Bodo B., Kauffmann S., Noctor G., Saindrenan P. The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv tomato is dependent on the oxidative burst. J Exp Bot. 2010. 61:3355–3370. S. H?rtensteiner. Chlorophyll degradation during senescence, Annu. Rev. Plant Biol. 2006.57, 55–77 Stevens C., Dise N., Mountford .J, Gowing D. Impact of nitrogen deposition on the species richness of grasslands. Science. 2004. 303, 1876–1879.
摘要: 
Metabolome is the small molecules of cells, tissues, body fluids or organs. And the study of metabolome was called metabolomics. After genomics and proteomics, metabolomics is an important research. In recent years, qualitative and quantitative of small molecule get more and more attention. Organisms was often stimulated by environmental or pharmaceutical,it can lead to different chain reaction and finally express the level of metabolites. And with the analysis of the expression of about various physiological, biochemical pathways, It may be be presumed that the physiological condition of the organism. With the development of technology, there are more and more tools. Like mass spectrometry, it provides high sensitivity, high accuracy and specificity. Besides, tandem mass spectrometry (MS / MS) also play a import role in the Metabolomics. In other way, the ultra performance liquid chromatography(UPLC) promote analysis of samples efficiently and reduce the use of sample. Therefore, the goal of this test is to use UPLC and quadrupole rods time of flight tandem mass spectrometer (Q-TOF) to establish a new platform for the analysis of metabonomics. In addition, we use the real sample of Oryza sativa that have TNG67 and its sodium azide mutagenesis mutant (SA405, SA407, SA408). The experiments were compared those rice in different times and with the data from mass spectrometry to get to simplify. And finally the use of metabolomics database had exist on the Internet to comparison. In the end, we hope can discovery some differences between these species and to know what it happen.

代謝體 (metabolome) 為細胞、組織、體液或器官所含的小分子的集合,而代謝體的研究則稱為代謝體學(metabolomics)。代謝體學 (metabolomics) 是繼基因體學、蛋白質體學後的一門重要研究領域。因此近年來,針對小分子層級作定性與定量的代謝質體學已越來越受到重視。生物體在受到刺激(生物、環境、藥物等..),所引起不同的連鎖反應最終將呈現在代謝物的表現量,而藉由這些表現量的分析,了解各種生理、生化途徑之調控機制,更可以推測出該生物體的生理狀況。隨著科技的發展,偵測代謝物的工具已越來越多,而其中由於質譜的高靈敏度、專一性、高準確性,再加上串聯質譜 (MS/MS) 的出現,使的質譜在代謝體學分析上扮演著重要的角色。而在另一塊液相層析的領域上,高效液相層析儀的出現更大幅度的提升分析的效率和有效的降低樣品用量。因此,本篇目的為利用極致效能液相層析儀 (UPLC) 搭配四極棒-飛行時間串聯質譜儀 (Q-TOF) 來建立一新分析代謝體學之平台,除此之外,更使用水稻 (Oryza sativa) 台農67號 (TNG67) 和其疊氮化鈉誘變突變體 (SA405、SA407、SA408) 來當作一真實樣品探討。本實驗分別以三種疊氮化鈉誘變突變體的三種時期(最高分?期、抽穗期、成熟期) 和對照組台農67號進行比較,經由質譜分析得到之數據透過統計軟體演算進而達到簡化數據和分群之效果,最後再利用網路上已存在之代謝體資料庫進行比對,期望能藉由此平台來看到這些品種之間的差異性存在並探討其產生的因由。
URI: http://hdl.handle.net/11455/92249
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:分子生物學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100055017-1.pdf37.16 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.