Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92264
標題: Rapid Analysis and Quantification of Polyphenol Compounds Using Graphene-based Sponge
Rapid Analysis and Quantification of Polyphenol Compounds Using Graphene-based Sponge
作者: 賴柔伶
Jo-Lene Lai
關鍵字: 多酚類化合物;石墨烯海綿;快速分析;polyphenol compounds;MALDI;graphene-based sponge
引用: REFERENCES Abel, C., Busia, K. An exploratory ethnobotanical study of the practice of herbal medicine by the Akan peoples of Ghana. Altern. Med. Rev. 2005, 10, 112-122. Ajay, M., Gilani, A. U., Mustafa, M. R. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci. 2003, 74, 603-612. Alan, L., Miller, N. D. Antioxidant flavonoids: structure, function and clinical usage. Altern. Med. Rev. 1996, 1, 103-111. Applied Biosystems and MDS Sciex. 4800 MALDI TOF/TOFTM Analyzer. Canada.2005. Atta-ur-Rahman, M., Shabbir, M., Ziauddin Sultani, S., Jabbar, A., Choudhary, M. I. Cinnamates and coumarins from leaves of Murraya paniculata. Phytochemistry. 1997, 44, 683-685. Balandin, A. A, Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano. Lett. 2008, 8, 902-907. Bachi, M., Milnes, M., Williams, C., Balmoori, J., Ye, X., Stohs, S., Bagchi, D. Acute and chronic stress-induced oxidative gastrointestinal injury in rats, and the protective ability of a novel grape seed proanthocyanidin extract. Nutrition Research. 1999, 19, 1189-1199. Bi, H. C., Xie, X., Yin, K., Zhou, Y., Wan, S., He, L., Xu, Feng., Banhart, F., Sun, L., Ruoff, R. S. Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Adv. Funct. Mater. 2012, 1-5. Brownson, D. A., Banks, C. E. Graphene electrochemistry: an overview of potential applications. Analyst. 2010, 135, 2768-2778. Cha, S., Yeung, E. S. Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal. Chem. 2007, 79, 2373-2385. Chen, D., Tang, L., Li, J. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 82, 5951-5957. Chen, W. Y., Chen, Y. C. Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal. Bioanal. Chem. 2006, 386, 699-704. Chiang, C. K., Lin, Y. W., Chen, W. T., Chang, H. T. Accurate quantitation of glutathione in cell lysates through surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. Nanomedicine. 2010, 6, 530-537. Chiang, C. K., Chiang, N. C., Lin, Z. H., Lan, G. Y., Lin, Y. W., Chang, H. T. Nanomaterial-based surface-assisted laser desorption/ionization mass spectrometry of peptides and proteins. J. Am. Mass Spectrom. 2010, 21, 1204-1207. Chiu, T. C., Chang, L. C., Chiang, C. K., Chang, H. T. Determining Estrogens Using Surface Assisted Laser Desorption/Ionization Mass Spectrometry with Silver Nanoparticles as the Matrix. J.Am. Soc. Mass Spectrom. 2008, 19, 1343-1346. Chiu, T. C., Huang, L. S., Lin, P. C., Chen, Y. C., Chen, Y. J., Lin, C. C., Chang, H. T. Nanomaterial Based Affinity Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Biomolecules and Pathogenic Bacteria. Recent Pat. Nanotechnol. 2007, 1, 99-111. Cole, R. B. Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications. 2010, A John Wiley & Sons, Canada. Cotter, R. J. Plasma desorption mass spectrometry: coming of age. Anal. Chem. 1988, 60, 781-793. Dong, X., Cheng, J., Li, J., Wang, Y. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Anal. Chem. 2010, 82, 6208-6214. Efros, A. L., Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 2000, 30, 475-521. Evans, W. C. Trease and Evans Pharmacogosy. 16th Ed. 2009, Elsevier Ltd. Fu, C. C., Lee, H. Y., Chen, K., Lim, T. S., Wu, H. Y., Lin, P. K., Wei, P. K., Tsao, P. H., Chang, H. C., Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA. 2007, 104,727-732. Fuller, R. W., Bokesch, H. R., Gustafson, K. R. HIV-Inhibitory coumarins from latex of the tropical rainforest tree Calophyllum teysmannii var. inophylloide. Bioorg. Med. Chem. Lett. 1994, 4, 1961-1964. Geim , A. K., Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191. Gholipour, Y., Giudicessi, S. L., Nonami, H., Erra-Balsells, R. Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal. Chem. 2010, 82, 5518-5526. Griffiths, J. A brief History of Mass Spectrometry. Anal. Chem. 2008, 80, 5678-5683. Gundry, R. L., Edward, R., Kole, T. P., Sutton, C., Cotter, R. J. Disposable Hydrophobic Surface on MALDI Targets for Enhancing MS and MS/MS Data of Peptides. Anal. Chem. 2005, 77, 6609-6617. Guo, Z., Zhang, Q. C., Zou, H. F., Guo, B. C., Ni, J. Y. A Method for the Analysis of Low-Mass Molecules by MALDI-TOF Mass Spectrometry. Anal. Chem. 2002, 74, 1637-1641. Havsteen, B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 1983, 32, 1141-1148. Huang, Y. F., Chang, H. T. Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface assisted laser desorption/ionization mass spectrometry. Anal. Chem.2006, 78, 1485-1493. Iranshahi, M., Askari, M., Sahebkar, A., Hadjipavlou-Litina, D. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin unbelliprenin. Daru. 2009, 17, 99-103. Izzi, V., Masuelli, L., Tresoldi, I., Sachetti, P., Modesti, A., Galvano, F. The effects of dietary flavonoids on the regulation of redoc inflammatory networks. Mol. Nutr. Food Res. 2012, 56, 1605-1616. Jokinen, V., Aura, S., Luosujarvi, L., Sainiemi, L., Kotiaho, T., Franssila, S., Baumann, M. Surface Assisted Laser Desorption/Ionization on Two-Layered Amorphous Silicon Coated Hybrid Nanostructures. J. Am. Soc. Mass Spectrom. 2009, 20, 1723-1730. Jia, X., Campos-Delgado, J., Terrones, M., Meunier, V., Dresselhaus, M.S. Graphene edges: a review of their fabrication and characterization. Nanoscale. 2011, 3, 86-95. Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1984, 60, 2299-2301. Kim, S. H., Kang, K. A., Zhang, R., Piao, M. J., Ko, D. O., Wang, Z. H., Chae, S. W., Kang, S. S., Lee, K. H., Kang, H. K., Kang, H. W., Hyun, J. W. Protective effect of esculetin against oxidative stress-induced cell damage via scavenging reactive oxygen species. Acta Pharmacol. Sin. 2008, 29, 1319-1326. Kim, Y., Johnson, R. C., Hupp, J. T. Gold Nanoparicle-Based Sensing of 'Spectroscopically Silent' Heavy Metal Ions. Nano Lett. 2001, 165-167. Kinumi, T., Saisu, T., Takayama, M., Niwa, H. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J. Mass Spectrom. 2000, 35, 416-422. Law, K. P., Larkin, J. R. Recent Advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 2011, 399, 2597-2622. Lee, J., Kim, Y. K., Min, D. H. Laser desorption/ionization mass spectrometry assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J. Am. Chem. Soc. 2010, 132, 14714-14717. Lee, K. H., Chiang, C. K., Lin, Z. H., Chang, H. T. Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass Spectrom. 2007, 21, 2023-2030. Lewis, J. K., Wei, J., Siuzdak, G. Matrix-assisted Laser Desorption/Ionization Mass Spectrometry Peptide and Protein Analysis. Encyclopedia of Analytical Chemistry. 2000, 5880-5894. Liu, Y., Liu, J., Yin, P., Gao, M., Deng, C., Zhang, X. High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. J. Mass Spectrom. 2011, 46, 804-815. Liu, Y., Liu, J., Deng, C., Zhang, X. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted desorption/ionization matrix interference. Rapid Commun. Mass Spectrom. 2011, 25, 3223-3234. Liu, C. W., Chien, M. W., Su, C. Y., Chen, H. Y., Li, L. J., Lai, C. C. Analysis of flavonoids by graphene-based surface assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst. 2012, 137, 5809-5816. Lo, C. Y., Lin, J. Y., Chen, W. Y., Chen, C. T., Chen, Y. C. Surface-Assisted laser desorption/ionization mass spectrometry on titania nanotube arrays. J. Am. Soc. Mass Spectrom. 2008, 19, 1014-1020. Lu, M., Lai, Y., Chen, G., Cai, Z. Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal. Chem. 2011, 83, 3161-3169. McLean, J. A., Stumpo, K. A., Russell, D. H. Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc. 2005, 127, 5304-5305. Middleton, E., Kandaswami, C. Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 1992, 43, 1167-1179. Miller, N. J., Rice-Evans, C. A. Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radic Res. 1997, 26, 195-199. Murray, R. D. H., Mendez, J., Brown, R. A. The Natural Coumarins. 1982, John Wiley and Sons. New York. Nguyen, D. D., Tai, N. H., Lee, S. B., Kuo, W. S. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci. 2012, 5, 7908-7912. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008, 320, 1308. Novoselov, K. S, Geim, A. K., Morzov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306, 666-669. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005, 438, 197-200. Ow, H., Larson, D. R., Srivastava, M., Baird, B. A., Webb, W. W., Wiesner, U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005, 5, 113-117. Piller, N. B. A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. Brit. J. Exp. Pathol. 1975, 56, 554-560. Rosselli, S., Maggio, A. M., Faraone, N. The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Nat. Prod. Commun. 2009, 4, 1701-1706. Seifried, H. E., Anderson, D. E., Fisher, E. I., Milner, J. A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 2007, 18, 567-579. Shrivas, K., Kailasa, S. K., Wu, H. F. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics. 2009, 9, 2656-2667. Spino, C., Dodier, M., Sotheeswaran, S. Anti-HIV coumarins from calophyllum seed oil. Bioorg. Med. Chem. Lett. 1998, 8, 3475-3478. Su, C. L., Tseng, W. L. Gold nanoparticles assisted matrix for determining neutral small carbohydrates through laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2007, 79, 1626-1633. Sunner, J., Dratz, E., Chen, Y. C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and protein from liquid solutions. Anal. Chem. 1995, 67, 4335-4342. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151-153. Tang, H. W., Ng, K. M., Lu, W., Che, C. M. Ion Desorption Efficiency and Internal Energy Transfer in Carbon-Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry: Desorption Mechanism(s) and the Design of SALDI Substrates. Anal. Chem. 2009, 81, 4720-4729. Tang, L. A. L., Wang, J., Loh, K. P. Graphene-Based SELDI Probe with Ultrahigh Extraction and Sensitivity for DNA Oligomer. J. Am. Chem. Soc. 2010, 132, 10976-10977. Thomson, J. J. Rays of Positive Electrycity and Their Application to Chemical Analysis. 1913, Longmans, London. Wan, D., Gao, M., Wang, Y., Zhang, P., Zhang, X. A rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J. Sep. Sci. 2013, 36, 629-635. Wang, M. T., Liu, M. H., Wang, C. C. R., Chang, S. Y. Silver-coated gold nanoparticles as concentrating probes and matrices for surface-assisted laser desorption/ionization mass spectrometric analysis of aminoglycosides. J. Am. Soc. Mass Spectrom. 2009, 20, 1925-1932. Watanabe, T., Kawasaki, H., Yonezawa, T., Arakawa, R. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J. Mass Spectrom. 2008, 43, 1063-1071. Wei, J., Buriak, J. M., Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature. 1999, 399, 243-246. Witaicenis, A., Seito, L. N., Stasi, L. C. D. Intestinal anti-inflammatory activity of esculetin and 4-methylesculetin in the trinitrobenzenesulphonic acid model of rat colitis. Chem-Biol. Interact. 2010, 186, 211-218. Xu, S. Y., Li, Y. F., Zou, H. F., Qiu, J. S., Guo, Z., Guo, B. C. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 6191-6195.
摘要: 
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been applied on wide range of biomolecules analysis based on its advantage of speed of analysis, sensitive, ease of use and data interpretation. However, MALDI contains limitation on matrix interference at low mass region and sweet spot searching, thus leading to the development of surface assisted laser desorption/ionization (SALDI). SALDI uses inorganic matrices which can reduce the matrix interference and capable in analyzing small molecules. Graphene is widely used in SALDI approaches and aid in analyzing small molecules such as fatty acids, amino acids and flavonoids. According to previous research, strong van der Waals interaction is formed between graphene nanosheet and 3M sponge thus created graphene-coated sponge. This graphene-coated sponge is used as a versatile and recyclable sorbent material. In this experiment, various tests such as graphene concentration optimization, evaluation of graphene flakes analysis on polyphenol compounds, dip coating solutions and time in the making of graphene-based sponges and others were proceeded to develop a rapid analyse and quantification polyphenol compounds platform. Results showed that graphene flakes are the best matrix in polyphenol compounds analysis when compare to LDI analysis and conventional methods using CHCA and DHB as matrices. Furthermore, graphene-based sponges made with graphene concentrations of 0.05 mg/mL coupled with 25s of coating time and coating solution of 50% ethanol yielded the highest sensitivity and similar results with the analysis using graphene flakes. By using this platform, the 3 stable polyphenol compounds (morin hydrate, quercitrin hydrate and quercetin-3-β-Dglucoside) were successfully quantified. In conclusion, the rapid analysis and quantification polyphenol compounds platform using graphene-based sponges was successfully developed.

基質輔助雷射脫附游離飛行時間式質譜儀 (Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, MALDI-TOF MS) 具快速和高靈敏度特性,常應用於分析蛋白質、胜肽和小分子等。然而,傳統分析方法中分析物與有機基質相互混合,易產生非均勻共結晶,進而導致訊號集中點 (sweet spot),並造成分子量小於 500 Da之基質訊號干擾,影響小分子分析。因此,為解決小分子分析困難,Sunner等人於1995年發展出表面輔助雷射脫附游離法 (Surface-assisted laser desorption/ionization, SALDI)。SALDI 利用無極基質進行分析,降低分子量500 Da以下訊號干擾,有利於小分子分析,改善MALDI缺點。前人研究顯示,石墨烯廣泛應用於脂肪酸、胺基酸和類黃酮等小分子分析,並可透過與海綿間的π-π相互作用,形成石墨烯海綿。因此,本篇研究利用石墨烯海綿建立快速分析及定量酚類化合物之平台。本次實驗首先測試石墨烯濃度對於酚類化合物分析之最佳化條件,接著利用石墨烯最佳化濃度 (0.05 mg/mL) 搭配不同濃度 (0%、50%、100%) 之乙醇及不同震盪時間 (5、10、15、20、25和30秒)以測試石墨烯海綿最佳化製作並建立快速分析及定量平台
。實驗結果顯示,利用含有石墨烯濃度0.05 mg/mL 之50% 乙醇搭配25秒震盪時間製作石墨烯海綿,成功分析10種酚類化合物,其結果趨近於單純利用石墨烯分析方法,並成功將3種酚類化合物 (morin hydrate, quercitrin hydrate, quercetin-3-β-D-glucoside) 進行定量分析,未來可作為酚類化合物產品之快速量化平台。
URI: http://hdl.handle.net/11455/92264
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:分子生物學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101055024-1.pdf2.92 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.