Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92267
標題: Study of infection of Xanthomonas campestris pv. campestris by filamentous phage phiLf
Xanthomonas campestris pv. campestris 對線狀噬菌體 phiLf 敏感性之研究
作者: 呂紹慈
Shao-Tzu Lu
關鍵字: 線狀噬菌體 phiLf;filamentous phage phiLf
引用: 林念璁. 1996. 線狀噬菌體 φLf 基因體上與複製及嵌入有關之段落。國立中興大學植物學研究所博士論文。 李孟娟. 2003. Xanthomonas campestris pv. campestris 第四型纖毛合成所需 pilSRBA1A2CD 基因串之研究。國立中興大學分子生物學研究所博士論文。 邱健維. 2001. 線狀噬菌體 φLf 基因 VIII 啟動子之研究。國立東華大學生物技術研究所碩士論文。 陳姿蓉. 2009. Xanthomonas campestris 之 dif 序列以及其緊鄰的 trbP 基因與線狀噬菌體 phiLf 感染的關係。國立中興大學分子生物學研究所碩士論文。 嚴明仁. 2003. Xanthomonas 線狀噬菌體之比較基因體學研究。國立中興大學分子生物學研究所博士論文。 Becker, A., Katzen, F., Puhler, A. and Ielpi, L. 1998. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol, 50: 145-152. Blakely, G., Colloms, S., May, G., Burke, M. and Sherratt, D. 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol, 3:789-798. Blakely, G., May, G., McCulloch, R., Arciszewska, L.K., Burke, M., Lovett, S.T. and Sherratt, D.J. 1993. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell, 75:351-361. Chan, J. W. and Good, P. H. 1999. The molecular genetics of virulence of Xanthomonas campestris. Biotechnol Adv, 17:489-508. Chang, K.H., Wen, F.S., Tseng, T.T., Lin, N.T., Yang, M.T. and Tseng, Y.H. 1998. Sequence analysis and expression of the filamentous phage phi Lf gene I encoding a 48-kDa protein associated with host cell membrane. Biochem Biophys Res Commun, 245:313-318. Chen, L.Y., Chen, D.Y., Miaw, J. and Hu, N.T. 1996. XpsD, an outer membrane protein required for protein secretion by Xanthomonas campestris pv. campestris, forms a multimer. J Biol Chem, 271:2703-2708. Chou, F. L., Chou, H. C., Lin, Y. S., Yang, B. Y., Lin, N. T., Weng, S. F., and Tseng, Y. H. 1997. The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem Biophys Res Commun, 233:265-269. Dai, H., Chiang, K.S. and Kuo, T.T. 1980. Characterization of new filamentous phage Cf from Xanthomonas citri. J. Gen. Virol., 46, 277-289. Daniels, M. J., Barber, C. E., Turner, P. C., Sawczyc, M. K. , Byrde, R. J. W., and Fielding, A. H. 1984. Cloning of genes involved in pathogenicity of Xanthomonas campestris pv.campestris using the broad host range cosmid pLAFR1. EMBO J. 3(13):3323–3328. Dum, F., Dow, J. M., and Daniels, M. J. 1991. Structural characterization of protein secretion genes of the bacterial phytopathogen Xanthomonas campestris pv. campestris: relatedness to secretion system of other gram-negative bacteria. Mol. Gen. Genet, 229:3357-3364. Harding, N.E., Cleary, J.M., Cabanas, D.K., Rosen, I.G. and Kang, K.S. 1987. Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. J Bacteriol, 169:2854-2861. Hsiao, M.Y. 2000. The host pilA gene required for infection of filamentous phage phiLf. Master thesis. National Chung Hsing University. Hu, N.T., Hung, M.N., Liao, C.T. and Lin, M.H. 1995. Subcellular location of XpsD, a protein required for extracellular protein secretion by Xanthomonas campestris pv. campestris. Microbiology, 141 ( Pt 6):1395-1406. Kaguni, J.M. and Kornberg, A. 1982. The rho subunit of RNA polymerase holoenzyme confers specificity in priming M13 viral DNA replication. J Biol Chem, 257:5437-5443. Ko, Y.W. 2000. Cloning and Analysis of pil gene in Xanthomonas campestris pv. vesicatoria 36. Master thesis. National Chung Hsing Univsersity. Kuempel, P.L., Henson, J.M., Dircks, L., Tecklenburg, M. and Lim, D.F. 1991. dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol, 3:799-811. Kuo, T.T., Chao, Y.S., Lin, Y.H., Lin, B.Y., Liu, L.F. and Feng, T.Y. 1987. Integration of the DNA of filamentous bacteriophage Cflt into the chromosomal DNA of its host. J Virol, 61:60-65. Lee, T.C., Chen, S.T., Lee, M.C., Chang, C.M., Chen, C.H., Weng, S.F. and Tseng, Y.H. 2001. The early stages of filamentous phage phiLf infection require the host transcription factor, Clp. J Mol Microbiol Biotechnol, 3:471-481. Lin, N.T., You, B.Y., Huang, C.Y., Kuo, C.W., Wen, F.S., Yang, J.S. and Tseng, Y.H. 1994. Characterization of two novel filamentous phages of Xanthomonas. J Gen Virol, 75 ( Pt 9):2543-2547. Lin, N.T. and Tseng, Y.H. 1996. The ori of filamentous phage phiLf is located within the gene encoding the replication initiation protein. Biochem Biophys Res Commun, 228:246-251. Lin, N.T., Wen, F.S. and Tseng, Y.H. 1996. A region of the filamentous phage phiLf genome that can support autonomous replication and miniphage production. Biochem. Biophys. Res. Commun., 218:12-16. Lin, N.T., Liu, T.J., Lee, T.C., You, B.Y., Yang, M.H., Wen, F.S. and Tseng, Y.H. 1999. The adsorption protein genes of Xanthomonas campestris filamentous phages determining host specificity. J Bacteriol, 181:2465-2471. Lin, N.T., Chang, R.Y., Lee, S.J. and Tseng, Y.H. 2001. Plasmids carrying cloned fragments of RF DNA from the filamentous phage (phi)Lf can be integrated into the host chromosome via site-specific integration and homologous recombination. Mol Genet Genomics, 266:425-435. Liu, T.J., Wen, F.S., Tseng, T.T., Yang, M.T., Lin, N.T. and Tseng, Y.H. 1997. Identification of gene VI of filamentous phage phi Lf coding for a 10-kDa minor coat protein. Biochem Biophys Res Commun, 239:752-755. Liu, T.J., You, B.Y., Lin, N.T., Yang, M.T. and Tseng, Y.H. 1998. Purification and expression of the gene III protein from filamentous phage phi Lf. Biochem Biophys Res Commun, 242:113-117. Marvin, D.A. and Hohn, B. 1969. Filamentous bacterial viruses. Bacteriol Rev, 33:172-209. Model, P. and Russel, M. 1988. Filamentous bacteriophage. The bacteriophages. Plenum Publishing Corp Press., New York, Vol. 2, pp:375-456. Pratt, D., Laws, P. and Griffith, J. 1974. Complex of bacteriophage M13 single-stranded DNA and gene 5 protein. J Mol Biol, 82:425-439. Russel, M. 1991. Filamentous phage assembly. Mol Microbiol, 5:1607-1613. Salstrom, J.S. and Pratt, D. 1971. Role of coliphage M13 gene 5 in single-stranded DNA production. J Mol Biol, 61:489-501. Soby, S.D. and Daniels, M.J. 1996. Catabolite-repressor-like protein regulates the expression of a gene under the control of the Escherichia coli lac promoter in the plant pathogen Xanthomonas campestris pv. campestris. Appl Microbiol Biotechnol, 46, 559-561. Su, W.C., Tung, S.Y., Yang, M.K. and Kuo, T.T. 1999. The pilA gene of Xanthomonas campestris pv. citri is required for infection by the filamentous phage cf. Mol Gen Genet, 262:22-26. Thorne, L., Tansey, L. and Pollock, T.J. 1987. Clustering of mutations blocking synthesis of xanthan gum by Xanthomonas campestris. J Bacteriol, 169:3593-3600. Tseng, Y.H., Lo, M.C., Lin, K.C., Pan, C.C. and Chang, R.Y. (1990) Characterization of filamentous bacteriophage phi Lf from Xanthomonas campestris pv. campestris. J Gen Virol, 71 ( Pt 8):1881-1884. Tseng, Y.H., Choy, K.T., Hung, C.H., Lin, N.T., Liu, J.Y., Lou, C.H., Yang, B.Y., Wen, F.S., Weng, S.F., and Wu, J.R. 1998. Chromosome map of Xanthomonas campestris pv. campestris 17 with locations of genes involved in xanthan gum synthesis and yellow pigmentation. Bacteriology. Vol. 181, No. 1:117–125. Vauterin, L., Rademaker, J., and Swings, J. 2000. Synopsis on the taxonomy of the genus xanthomonas. Phytopathology. 90(7):677-682. Wen, F.S. and Tseng, Y.H. 1994. Nucleotide sequence determination, characterization and purification of the single-stranded DNA-binding protein and major coat protein of filamentous phage phi Lf of Xanthomonas campestris pv. campestris. J Gen Virol, 75 ( Pt 1):15-22. Wen, F.S. and Tseng, Y.H. 1996. Nucleotide sequence of the gene presumably encoding the adsorption protein of filamentous phage phiLf. Gene, 172:161-162. Williams, P.H. 1980. Black rot: a continuing threat to world crucifers. Plant Dis.64: 736–742. Yang, B. Y., and Tseng, Y. H. 1988. Production of exopolysaccharide and levels of protease activity in pathogenic and non-pathogenic strains of Xanthomonas campestris pv. campestris. Bot. Bull. Acad. Sin, 29:93-99. Yen, M.R., Lin, N.T., Hung, C.H., Choy, K.T., Weng, S.F. and Tseng, Y.H. 2002. oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol, 68:2924-2933.
摘要: 
Filamentous phage φLf specifically infects Xanthomonas campestris pv. campestris (Xcc). It has a single-stranded circular DNA with a genome site of 6,008 nucleotides. The φLf viral strand encodes nine genes organized into the order of gII-gX-gV-gVII-gIX-gVIII- gIII-gVI-gI, with gII, gX and gV shown to be required for replication, gVII, gIX, gVIII, gIII, and gVI encoding coat proteins, and gI responsible for assembly and morphogenesis. φLf-homologous region (fhr) is present on the chromosome of Xcc strain Xc17, next to the dif (deletion induced filamentation) site that is the end of chromosome replication. This region has been shown to site specific integration between dif site (attB) and the dif-homologous attP site in φLf, and homologous recombination via the fhr region outside dif. φLf can infect Xcc strain P20H, but can't infect Xc17. Xc17fhrΔ8361 was constructed from Xc17 containing gVIII, gIII, gVI and gI of fhr region replaced by Gmr cartridge.φLf can infect Xc17fhrΔ8361. The purpose of this study was to understand why φLf can't infect Xc17 ? Two experimental strategies were used for study: (I) Xc17 mutants with Gmr cartridge replaced the gVIII,gIII,gVI or gI gene in the fhr region were contracted and infected by φLf. (II) Xc17fhrΔ8361 transformants complemented with DNA fragments carrying Xc17fhr gVIII,gIII,gVI and gI were obtained and infected by φLf. Results showed that mutation of gVIII,gIII,gVI or gI gene in the fhr region of Xc17 causes no effects on φLf infection. Adsorption test results appeared that Xc17 mutants is no significant difference by φLf. Therefore, mutation in the gVIII~gIII, gVIII~gVI,gVIII~gI and gVIII~gI gene of Xc17 causes no effects on φLf infection. PCR amplification analysis results, showed that fhr region is absent in the genome of Xc17fhrΔ8361 and P20H. Based on the results, φLf infection isn't associated with gVIII,gIII,gVI,gI gene but pilA1. Expression levels of pilA1 are various among Xc17, Xc17fhrΔ8361 and P20H by real-time PCR. Higher expression level of pilA1 in P20H, φLf can efficiency infect host, and lower expression level of pilA1 in Xc17fhrΔ8361, φLf also can efficiency infect host, but lower expression level of pilA1 in Xc17, φLf can't infect host. Based on the results, presumably there is other factor more influence than pilA1 efficiency when φLf infected host.

φLf 是十字花科蔬菜黑腐病菌 Xanthomonas campestris pv. campestris (Xcc) 之線狀噬菌體,其基因體為單股環狀 DNA,包含 6,008 個核苷酸。φLf 的基因排列與 E. coli Ff 噬菌體相似,順序為 gII - gX - gV - gVII - gIX - gVIII - gIII - gVI - gI。gII、gX 和 gV 與 DNA 複製有關,gVII、gIX、gVIII、gIII 和 gVI 主導噬菌體之外套蛋白,而 gI 產物則負責噬菌體之裝配與釋放。Xcc strain 17 (簡稱 Xc17) 的染色體複製終點 dif (deletion induced filamentation) site,也是 attB site,鄰近於 φLf–homologous region (fhr) 的右邊界。φLf 上的 attP site (位於 gI 下游) 可與宿主上的 attB 接觸,進行 site-specific integration,而 dif site 外圍之 fhr 區域則可供作進行 homologous recombination。φLf 可感染 Xcc strain P20H,但無法感染 Xc17;然而,前人將 Xc17 染色體上 fhr 區域中包含 gVIII、gIII、gVI和gI 的 DNA 片段以 Gmr 取代後,突變株即可被 φLf 感染,此突變株被命名為 Xc17fhrΔ8361。本研究目的為了解 Xc17 無法被 φLf 感染的原因。使用實驗策略如下:以插入突變法分別破壞 Xc17 染色體上 fhr 區域中的 gVIII、gIII、gVI 和 gI 基因,以了解哪個基因產物與 φLf 之感染有關。以及將 gVIII、gIII、gVI 和 gI 基因分別構築於質體上,轉殖送入 Xc17fhrΔ8361 突變株中,測試 φLf 的釋放情形。目前發現 φLf 無法感染上述個別基因被破壞的 Xc17 突變株。吸附率測試結果發現,相較於 Xc17,φLf 對於這些突變株的吸附能力亦無明顯差異。將 gVIII、gIII、gVI 和 gI 基因分別構築於質體上,再轉殖送入 Xc17fhrΔ8361 突變株後,以 spot test 和 plaque assay 測試,發現 φLf 依然能感染轉殖株,且轉殖株與 Xc17fhrΔ8361 釋出的噬菌體 titer 並無明顯差異。又構築 gVIII~gVI、gVIII~gI (Xc17fhrΔ8361L-1,gVIII、gIII、gVI 和 gI 基因全部被 Gmr 取代) 和 gVIII~gI (Xc17fhrΔ8361L-2,gVIII、gIII、gVI 和 gI 基因被 Gmr 取代,gVIII 基因部分保留) 刪除之突變株,發現 φLf 依然無法感染這些突變株。在實驗過程中發現,Xc17fhrΔ8361 與 Xc11 的突變株 P20H 的 EPS 含量和移動能力相似。於是,進一步利用 PCR 增幅分析 Xc17fhrΔ8361 與 P20H 在 fhr 區域以及 dif1 與 dif2 之相似性,發現 Xc17fhrΔ8361 與 P20H 都不具有 fhr 區域。由以上實驗中得知前人構築的 Xc17fhrΔ8361 基因體圖譜似乎與預期的不同,且 φLf 能感染宿主之原因與 fhr 區域的 gVIII、gIII、gVI 和 gI 基因之存在與否無關。已知 pilA1 與 φLf 的感染有關,因此利用 real-time PCR 檢測 Xc17、Xc17fhrΔ8361 與 P20H 之 pilA1 RNA 表現量。結果顯示菌株中 pilA1 RNA 量高低與 φLf 感染率無絕對相關。推測除了 pilA1 外,尚有其它因子能影響 φLf 是否會感染宿主。
URI: http://hdl.handle.net/11455/92267
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:分子生物學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101055005-1.pdf2.03 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.