Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92292
標題: PIM1抑制劑減緩腹膜轉移及胃癌腫瘤幹細胞生長機制之探討
The Mechanisms of PIM1 Inhibitor Thwarts Peritoneal Dissemination and Gastric Cancer Stem-like Cells Proliferation
作者: 周航儀
Hang-Yi Chou
關鍵字: 胃癌;PIM1;STAT3;類腫瘤幹細胞;CD133;EMT;腹膜轉移;Gastric cancer;PIM1;STAT3;Cancer stem like cell;CD133;EMT;peritoneal dissemination
引用: 1 Murad AM, Santiago FF, Petroianu A, Rocha PR, Rodrigues MA, Rausch M (1993). Modified therapy with 5-fluorouracil, doxorubicin, and methotrexate in advanced gastric cancer. Cancer 72: 37-41. 2 Qin J, Liu M, Ding Q, Ji X, Hao Y, Wu X et al (2014). The direct effect of estrogen on cell viability and apoptosis in human gastric cancer cells. Molecular and cellular biochemistry 395: 99-107. 3 Thrumurthy SG, Chaudry MA, Hochhauser D, Mughal M (2013). The diagnosis and management of gastric cancer. BMJ (Clinical research ed) 347: f6367. 4 Shin CM, Kim N, Yang HJ, Cho SI, Lee HS, Kim JS et al (2010). Stomach cancer risk in gastric cancer relatives: interaction between Helicobacter pylori infection and family history of gastric cancer for the risk of stomach cancer. Journal of clinical gastroenterology 44: e34-39. 5 Jakszyn P, Gonzalez CA (2006). Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World journal of gastroenterology : WJG 12: 4296-4303. 6 Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM et al (2014). Treatment of gastric cancer. World journal of gastroenterology : WJG 20: 1635-1649. 7 Kelley JR, Duggan JM (2003). Gastric cancer epidemiology and risk factors. Journal of clinical epidemiology 56: 1-9. 8 Comis RL, Carter SK (1974). A review of chemotherapy in gastric cancer. Cancer 34: 1576-1586. 9 Saris CJ, Domen J, Berns A (1991). The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. The EMBO journal 10: 655-664. 10 Amaravadi R, Thompson CB (2005). The survival kinases Akt and Pim as potential pharmacological targets. The Journal of clinical investigation 115: 2618-2624. 11 Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J (2010). PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 95: 1004-1015. 12 Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J et al (2008). Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. The Journal of biological chemistry 283: 18012-18023. 13 Block KM, Hanke NT, Maine EA, Baker AF (2012). IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas 41: 773-781. 14 Matikainen S, Sareneva T, Ronni T, Lehtonen A, Koskinen PJ, Julkunen I (1999). Interferon-alpha activates multiple STAT proteins and upregulates proliferation-associated IL-2Ralpha, c-myc, and pim-1 genes in human T cells. Blood 93: 1980-1991. 15 Yip-Schneider MT, Horie M, Broxmeyer HE (1995). Transcriptional induction of pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor. Blood 85: 3494-3502. 16 Peltola KJ, Paukku K, Aho TL, Ruuska M, Silvennoinen O, Koskinen PJ (2004). Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. Blood 103: 3744-3750. 17 Magistroni V, Mologni L, Sanselicio S, Reid JF, Redaelli S, Piazza R et al (2011). ERG deregulation induces PIM1 over-expression and aneuploidy in prostate epithelial cells. PloS one 6: e28162. 18 Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S (2005). Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. Journal of medicinal chemistry 48: 7604-7614. 19 Losman JA, Chen XP, Vuong BQ, Fay S, Rothman PB (2003). Protein phosphatase 2A regulates the stability of Pim protein kinases. The Journal of biological chemistry 278: 4800-4805. 20 Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS (2002). Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochimica et biophysica acta 1593: 45-55. 21 Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N (2008). Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer research 68: 5076-5085. 22 Lin YW, Beharry ZM, Hill EG, Song JH, Wang W, Xia Z et al (2010). A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma. Blood 115: 824-833. 23 Chen CN, Lin JJ, Chen JJ, Lee PH, Yang CY, Kuo ML et al (2005). Gene expression profile predicts patient survival of gastric cancer after surgical resection. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23: 7286-7295. 24 Kalluri R, Weinberg RA (2009). The basics of epithelial-mesenchymal transition. The Journal of clinical investigation 119: 1420-1428. 25 Quaggin SE, Kapus A (2011). Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney international 80: 41-50. 26 Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ (2013). Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. Journal of dental research 92: 114-121. 27 Thiery JP (2002). Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2: 442-454. 28 Fulda S, Gorman AM, Hori O, Samali A (2010). Cellular stress responses: cell survival and cell death. International journal of cell biology 2010: 214074. 29 Sitia R, Braakman I (2003). Quality control in the endoplasmic reticulum protein factory. Nature 426: 891-894. 30 Kim I, Xu W, Reed JC (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature reviews Drug discovery 7: 1013-1030. 31 Sorimachi H, Suzuki K (2001). The structure of calpain. Journal of biochemistry 129: 653-664. 32 Goll DE, Thompson VF, Li H, Wei W, Cong J (2003). The calpain system. Physiological reviews 83: 731-801. 33 Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004). Structure, activation, and biology of calpain. Diabetes 53 Suppl 1: S12-18. 34 Huang Y, Wang KK (2001). The calpain family and human disease. Trends in molecular medicine 7: 355-362. 35 Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG (2011). The calpain system and cancer. Nature reviews Cancer 11: 364-374. 36 Siegel PM, Massague J (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nature reviews Cancer 3: 807-821. 37 Fiocchi C (2001). TGF-beta/Smad signaling defects in inflammatory bowel disease: mechanisms and possible novel therapies for chronic inflammation. The Journal of clinical investigation 108: 523-526. 38 Pessah M, Prunier C, Marais J, Ferrand N, Mazars A, Lallemand F et al (2001). c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America 98: 6198-6203. 39 De Luca A, Fiorillo M, Peiris-Pages M, Ozsvari B, Smith DL, Sanchez-Alvarez R et al (2015). Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 6: 14777-14795. 40 Vincent A, Kazmierczak C, Duchene B, Jonckheere N, Leteurtre E, Van Seuningen I (2015). Cryosectioning the intestinal crypt-villus axis: an ex vivo method to study the dynamics of epigenetic modifications from stem cells to differentiated cells. Stem cell research 14: 105-113. 41 Zeineddine D, Hammoud AA, Mortada M, Boeuf H (2014). The Oct4 protein: more than a magic stemness marker. American journal of stem cells 3: 74-82. 42 Ajani JA, Song S, Hochster HS, Steinberg IB (2015). Cancer stem cells: the promise and the potential. Seminars in oncology 42 Suppl 1: S3-17. 43 Weirauch U, Beckmann N, Thomas M, Grunweller A, Huber K, Bracher F et al (2013). Functional role and therapeutic potential of the pim-1 kinase in colon carcinoma. Neoplasia (New York, NY) 15: 783-794. 44 Liu SH, Shen CC, Yi YC, Tsai JJ, Wang CC, Chueh JT et al (2010). Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-gamma and COX-2-dependent signals. British journal of pharmacology 160: 1963-1972. 45 Pan HC, Lai DW, Lan KH, Shen CC, Wu SM, Chiu CS et al (2013). Honokiol thwarts gastric tumor growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model. Carcinogenesis 34: 2568-2579. 46 Liu SH, Wang KB, Lan KH, Lee WJ, Pan HC, Wu SM et al (2012). Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PloS one 7: e43711. 47 Lee WJ, Lan KH, Chou CT, Yi YC, Chen WC, Pan HC et al (2013). Tpl2 inhibitors thwart endothelial cell function in angiogenesis and peritoneal dissemination. Neoplasia (New York, NY) 15: 1036-1048. 48 Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S et al (2002). A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proceedings of the National Academy of Sciences of the United States of America 99: 9990-9995. 49 Peng TL, Chen J, Mao W, Liu X, Tao Y, Chen LZ et al (2009). Potential therapeutic significance of increased expression of aryl hydrocarbon receptor in human gastric cancer. World journal of gastroenterology : WJG 15: 1719-1729. 50 Meja K, Stengel C, Sellar R, Huszar D, Davies BR, Gale RE et al (2014). PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways. British journal of haematology 167: 69-79.
摘要: 
胃癌是全世界排名第四個最普遍被診斷的癌症,而且有將近75%的病患會有癌症轉移的現象,而腹膜轉移是腫瘤具有抗藥性、多樣性、侵略性的臨床病徵。而腫瘤幹細胞的細胞多樣性則是被認為是腫瘤具有抗藥性、預後復發的關鍵角色。根據研究指出信號傳導及轉錄激活蛋白3 (STAT3)是腫瘤細胞生存、生長、腹膜轉移的重要蛋白,並且跟原致癌基因PIM1 絲胺酸/蘇胺酸激酶 (Proto-Oncogene Serine /Threonine-Protein Kinase PIM1)的表達有密切相關。因此利用PIM1抑制劑治療胃癌異殖腫瘤,在正子電腦斷層掃描 (PET/CT)觀察給予PIM1抑制劑後四至六週腫瘤於裸鼠體內生長及轉移情形得到改善。並在分子層次利用西方墨點法 (Western blot)以及核酸干擾技術 (RNA interference)得知PIM1會調控STAT3、Smad路徑進而影響EMT。此外,從石蠟組織免疫螢光染色 (paraffin section immunohistochemistry) 及免疫組織化學染色 (immuno- histochemistry)腫瘤組織切片也能發現PIM1與腫瘤幹細胞標記之間的關聯性,利用癌症臨床用藥阿黴素 (Doxorubicin)篩選出具抗藥性及幹細胞標記的MKN45細胞並且評估其治療效果及機轉。類腫瘤胃癌幹細胞具有抗藥性、球狀聚落及高度表現腫瘤幹細胞標記 (CD133, CD44, DLL4 and LGR5),並且利用瓊膠生長實驗 (Colony Formation Assay)、西方墨點法觀察給予PIM1抑制劑的類腫瘤胃癌幹細胞,其細胞生長明顯受到抑制,並進一步在裸鼠的腫瘤異殖動物模式中也發現PIM1抑制劑可有效抑制類腫瘤胃癌幹細胞的磷酸化STAT3以及腫瘤幹細胞標記蛋白的表現。因此可得知PIM1抑制劑不僅在一般胃癌細胞上具有治療效果,在腫瘤幹細胞的治療上也可能可針對抑制磷酸化STAT3成為具有潛力的標靶分子藥物。

Gastric cancer is the forth commonly cancer in the world, and nearly 75% of patients have cancer metastasis. Peritoneal dissemination is the key of tumor's drug resistant, diversity and aggressiveness. The heterogeneousity of cancer stem cells have been considered as the role of tumor's drug resistant and the prognosis of recurrence. As the study reported, STAT3 is the main protein of tumor survival, growth and peritoneal dissemination, and with highly correlation of PIM1 expression. Therefore, the treatment of PIM1 inhibitors for the gastric cancer cell xenograft mouse model will observed down-regulation of tumor growth and peritoneal dissemination after 4-6 weeks by positron emission tomography computed tomography (PET / CT) scan in nude mice. At molecular level, using western blot and RNA interference found that PIM1 effect EMT through regulated STAT3,Smad pathway. Furthermore, we also found the co-localization of PIM1 and cancer stem cell marker by histology, and indicated that PIM1 expression is associated cancer stem cell growth. So, we use the clinical drug Doxorubicin screening MKN45 and assess the effect of PIM1 inhibitor and mechanism. which have highly drug resistant, spheroid colony and over-expression cancer stem cell marker (CD133, CD44, DLL4 and LGR5). By means of colony formation assay and western blot observed that PIM1 inhibitors can suppress cancer stem-like cell MKN45 growth. And in xenograft mouse model also recognize PIM1 inhibitors has therapeutic effect not only on general gastric cancer cell, but also on cancer stem-like cell be inhibiting phosphorylation of STAT3. Thus, PIM1 inhibitor have the potential to become a molecule drugs on cancer stem cell target therapy.
URI: http://hdl.handle.net/11455/92292
Rights: 同意授權瀏覽/列印電子全文服務,起公開。
Appears in Collections:生物醫學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102059001-1.pdf36.97 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.