Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92297
標題: 在皮膚細胞探討Imiquimod誘導DNA損傷之研究
Study of Imiquimod Induced DNA Damage in Skin Cells
作者: 江欣宜
Hsin-Yi Jiang
關鍵字: 無;no
引用: 1.Clancy S. DNA Damage & Repair: Mechanisms for Maintaining DNA Integrity. (2008)Nature Education 1(1):103. 2.Norbury CJ. and Zhivotovsky B. DNA damage-induced apoptosis. (2004) Oncogene 23, 2797–2808. 3.Douki T, Bérard I, Wack A, Andrä S. Contribution of Cytosine-containing cyclobutane dimmers to DNA damage produced by photosensitized triplet-triplet energy transfer.(2014)Chemistry. 20(19):5787-94. 4.Sproul CD, et al. Cyclobutane Pyrimidine Dimer Density as a Predictive Biomarker of the Biological Effects of Ultraviolet Radiation in Normal Human Fibroblast.(2013)Photochem Photobiol. 10.1111/php.12194. 5.Zhao X, Toyooka T, Ibuki Y. Silver ions enhance UVB-induced phosphorylation of histone H2AX.(2014)Environ Mol Mutagen. 10.1002/em.21875. 6.Best BP. Nuclear DNA damage as a direct cause of aging.(2009)Rejuvenation Res. 12(3):199-208. 7.Chem Rev. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer.(2009)Chem Rev. 109(7):2880-93. 8.Yue QX, Liu X, Guo DA. Microtubule-binding natural products for cancer therapy. (2010) Planta Med. 76 (11): 1037–43. 9.Kadlubar FF, et al. Comparison of DNA adduct levels associated with oxidative stress in human pancreas.(1998)Mutat Res. 405(2):125-33. 10. De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. (2004) Mutagenesis. 19(3):169-85. 11. Dedon PC, et al. Indirect mutagenesis by oxidative DNA damage: formation of the pyrimidopurinone adduct of deoxyguanosineby base propenal.(1998)Proc Natl Acad Sci U S A. 95(19):11113-6. 12. BurgdorfLT, CarellT.Synthesis, stability,and conformation of formamidopyrimidine G DNA lesion.(2002)Chemistry. 8(1):293-301. the 13. Kunz BA, Ramachandran K, Vonarx EJ. DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae.(1998)Genetics. 148(4):1491-505. 14. Stuart GR, et al. Mutation frequency and specificity with age in liver, bladder and brain of lacI transgenic mice.(2000)Genetics. 154(3):1291-300. 15. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer.(2001) Nature. 411(6835):366-74. 16. Sulli G, Di Micco R, d'Adda di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer.(2012)Nat Rev Cancer. 12(10):709-20. 17. Meek D. W. Tumour suppression by p53: a role for the DNA damage response?(2009)Nat Rev Cancer. 9, 714-723. 18. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation.(2003)Nature. 421(6922):499-506. 19. Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination.(2005)Nat Rev Mol Cell Biol. 6(1):44-55. 20. Vousden, K. H. and Lane, D. P. p53 in health and disease.(2007) Nature Rev. Mol. Cell Biol. 8, 275–283 21. Pilch DR, et al. Characteristics of gamma-H2AX foci at DNA double-strand breaks sites.(2003)Biochem Cell Biol. 81(3):123-9. 22. Duncan JA, Reeves JR, Cooke TG. BRCA1 and BRCA2 proteins: roles in health and disease.(1998)Mol Pathol. 51(5):237-47. 23. Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage.(2004)Cancer Sci. 95(11):866-71. 24. Friedenson B. The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers.(2007)BMC Cancer. 6;7:152. 25. Starita LM, Parvin JD. The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair.(2003)Curr Opin Cell Biol. 15(3):345-50. 26. Halpern J, Hopping B, Brostoff JM. Photosensitivity, corneal scarring and developmental delay: Xeroderma Pigmentosum in a tropical country. 2008)(Cases J. 1(1):254. 27. Lehmann AR. Xeroderma pigmentosum.(2011)Orphanet J Rare Dis. 6: 70. 28. Fuss JO, Cooper PK. DNA repair: dynamic defenders against cancer and aging.(2006)PLoS Biol. 4(6):e203. 29. Niedernhofer LJ, et al. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients. ( 2011 ) Mech Ageing Dev. 132(6-7):340-7. 30. Hou SM, et al. The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk.(2002)Carcinogenesis. 23(4):599-603. 31. Friedberg EC. How nucleotide excision repair protects against cancer.(2001)Nat Rev Cancer. 1, 22-33. 32. Boiteux S, Jinks-Robertson S. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.(2013)Genetics. 193(4):1025-64. 33. Wu X, et al. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation.(2007)Oncogene. 26(5):757-64. 34. Li Z, et al. UV-Induced Nuclear Import of XPA Is Mediated by Importin- α4 in An ATR-Dependent Manner.(2013)PLoS One. 8(7):e68297. 35. Klionsky, D.J. and Emr, S.D. Autophagy as a regulated pathway of cellular degradation. (2000) Science. 290:1717-1721. 36. Meijer, A.J. and Codogno, P. Regulation and role of autophagy in mammalian cells. (2004) Int J Biochem Cell Biol 36, 2445-2462. 37. Kunz, J.B., Schwarz, H., and Mayer, A. Determination of four sequential stages during microautophagy in vitro. (2004) J Biol Chem. 279, 9987-9996. 38. Maiuri MC, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. (2007) Nat Rev Mol Cell Biol. 8,741-52. 39. Noboru Mizushima, et al. Autophagy fights disease through cellular self-digestion. (2008) Nature. PMC. 451(7182):1069–1075. 40. Yorimitsu T. and Klionsky D.J. Autophagy: molecular machinery for self-eating. (2005). Cell Death Differ. 2, 1542-1552. 41. Shintani, T. and Klionsky, D. J. Autophagy in health and disease: a double-edged sword. (2004) Science. 306, 990–995 42. Rubinsztein DC. et al. Potential therapeutic applications of autophagy. (2007) Nature Rev. Drug Discov. 6, 304–312. 43. Kunz JB, Schwarz H, and Mayer A. Determination of four sequential stages during microautophagy in vitro. (2004) J Biol Chem. 279, 9987-9996. 44. Yorimitsu T and Klionsky DJ. Autophagy: molecular machinery for self-eating. (2005) Cell Death Differ. 2, 1542-52. 45. Cuervo AM, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. (2004) Science. 305, 1292-1295. 46. Kaushik S, Massey AC, Mizushima N, and Cuervo AM. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. (2008) Mol Biol Cell. 19,2179-192. 47. Lum JJ, DeBerardinis RJ. and Thompson CB. Autophagy in metazoans: cell survival in the land of plenty. (2005) Nature Rev. Mol. Cell Biol. 6, 439–448. 48. Baehrecke EH. Autophagy: dual roles in life and death? (2005) Nature Rev. Mol. Cell Biol. 6, 505–510. 49. Levine B. and Yuan J. Autophagy in cell death: an innocent convict? (2005) J. Clin. Invest. 115, 2679–2688. 50. Levine B. and Klionsky DJ. Development by selfdigestion: molecular mechanisms and biological functions of autophagy. (2004) Dev. Cell 6, 463–477. 51. Danial NN. and Korsmeyer, SJ. Cell death: critical control points. (2004) Cell. 116, 205–219. 52. Green DR. Apoptotic pathways: ten minutes to dead. (2005) Cell 121, 671–674. 53. Kroemer G., et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. (2005) Cell Death Differ. 12 (Suppl. 2), 1463–1467. 54. Miller SJ. Aetiology and pathogenesis of basal cell carcinoma. (1995) Clin Dermatol. 13, 527-536. 55. Wong CSM., Strange RC, and Lear JT. Basal cell carcinoma. (2003) BMJ. 327, 794–798. 56. Holmes SA, Malinovszky K, and Roberts DL. Changing trends in non-melanoma skin cancer in South Wales, 1988-1998. (2000) Br J Dermatol 143, 1224-1229. 57. Marks R, Staples M, and Giles G. Trends in non-melanocytic skin cancer treated in Australia: the second national survey. (1993) Int J Cancer 53, 585-590. 58. Miller DL, and Weinstock MA. Nonmelanoma skin cancer in the United States: incidence. (1994) J Am Acad Dermatol. 30, 774-778. 59. Zanetti R, et al. The multicentre south European study 'helios' I: skin characteristics and sunburns in basal cell and squamous cell carcinomas of the skin. (1996) Br J Cancer 73, 1440-1446. 60. Rosso S, et al. The multicentre south European study 'helios' II: different sun exposure patterns in the aetiology of basal and squamous cell carcinomas of the skin. (1996) Br J Cancer. 73, 1447-1454. 61. Corona R, et al. Risk factors for basal cell carcinoma in a Mediterranean population. (2002) Arch Dermatol. 137, 1162-1168. 62. Lear JT, et al. Risk factors for basal cell carcinoma in the UK: case-control study in 806 patients. (1997) J R Soc Med. 90, 371-374. 63. Gallagher RP, et al. Chemical exposures, medical history and risk of squamous and basal cell carcinoma of the skin. (1996) Cancer Epidemiol Biomarkers Prev. 5, 419-424. 64. Maloney ME. Arsenic in dermatology. (1996) Dermatol Surg. 22, 301-304. 65. Hartevelt MM, et al. Incidence of skin cancer after renal transplantation in the Netherlands. (1990) Transplantation. 49, 506-509. 66. Gailani MR, et al. The role of the human homologue of Drosophilia patched in sporadic basal cell carcinomas. (1996) Nat Gen. 14, 79-81. 67. Aszterbaum M, et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. (1999) Nat Med. 5, 1285-1291. 68. Silverman MK, et al Levenstein MS. Recurrence rates of treated basal cell carcinomas. Part 3: surgical excision. (1992) J Dermatol Surg Oncol. 18, 471-476. 69. Silverman MK, et al. Recurrence rates of treated basal cell carcinomas. Part 2: curettage-electrodessication. (1991) J Dermatol Surg Oncol. 17, 720-726. 70. Kuflik EG, and Gage A. The five-year cure rate achieved by cryosurgery for skin cancer. (1991) J Am Acad Dermatol. 24, 1002-1004. 71.Marks R, et al. Imiquimod 5% cream in the treatment of superficial basal cell carcinoma: results of a multicentre 6-week dose-response trial. (2001) J Am Acad Dermatol. 44, 807-813. 72.Schön MP and Schön M. Immune modulation and apoptosis induction: Two sides of the antitumoral activity of imiquimod. (2004) Apoptosis. 9: 291-298. 73.Margarete Schön, et al. Tumor-Selective Induction of Apoptosis and the Small-Molecule Immune Response Modifier Imiquimod. (2003) Journal of the National Cancer Institute. 95. 74.Georg Stary, et al. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. (2007) J Exp Med. 204, 1441–1451. 75.Francesco Lacarrubba, Maria Rita Nasca, and Giuseppe Micali. Advances in the use of topical imiquimod to treat dermatologic disorders. (2008) Ther Clin Risk Manag. 4, 87–97. 76. Evelinen LJM, et al. The Use of TLR7 and TLR8 Ligands for the Enhancement of Cancer Immunotherapy. (2008) The Oncologist. 13, 859–875. 77. Miller RL, et al. Imiquimod applied topically: a novel immune response modifier and new class of drug. (1999) Int J Immunopharmacol. 21, 1-14 78. Tyring S. Imiquimod applied topically: A novel immune response modifier. (2001) Skin Therapy Lett. 6, 1-4. 79. Lacarrubba F, Nasca MR, & Micali G. Advances in the use of topical imiquimod to treat dermatologic disorders. (2008) Ther Clin Risk Manag. 4, 87-97. 80. Gibson SJ, Imbertson LM, and Wagner TL. Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. (1995) J Interferon Cytokine Res. 15, 537–545. 81. Megyeri K, Au WC, and Rosztoczy I. Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by sendai virus utilize similar signal transduction pathways. (1995) Mol Cell Biol. 15, 2207–2218. 82. Miller RL, and Birmachu WGS. Cytokine induction by imiquimod, preclinical results and pharmacology. (1994) Chemother J. 4, 148–149. 83. Reiter MJ, et al. Cytokine induction in mice by the immunomodulator imiquimod. (1994) J Leukocyte Biol. 55, 234–240. 84. Sullivan TP, Dearaujo T, Vincek V, and Berman B. Evaluation of superficial basal cell carcinomas after treatment with imiquimod 5% cream or vehicle for apoptosis and lymphocyte phenotyping. (2003) Dermatol Surg. 29, 1181–1186. 85. Suzuki H, et al. Imiquimod, a topicalimmune response modifier, induces migration of Langerhanscells. (2000) J Invest Dermatol. 114, 135–141. 86. Harrison CJ, Miller RL, and Bernstein DI. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs. (1994) Antimicrob Agents Chemother. 38, 2059–2064. 87. Bernstein DI, et al. Effect of imiquimod as an adjuvant for immunotherapy of genital HSV in guinea pigs. (1995) Vaccine. 13, 72–76. 88. Burns R, et al. The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal Langerhans cells. (2000) Clin Immunol. 94, 13–23. 89. Michael P. Schön, et al. Death Receptor-Independent Apoptosis in Malignant Melanoma Induced by the Small-Molecule Immune Response Modifier Imiquimod. (2004) J Invest Dermatol. 122, 1266–1276. 90. Georg Stary, et al. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. (2007) J Exp Med. 204, 1441–1451. 91. Eric B. Smith, et al. Antitumor Effects of Imidazoquinolines in Urothelial Cell Carcinoma of the Bladder. (2007) The Journal of Urology. 177, 2347-2351. 92. Delgado MA, et al. Toll-like receptors control autophagy. (2008) EMBO. 27, 1110-1121. 93. Gutierrez MG, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. (2004) Cell. 119, 753-766. 94. Jongdae Lee, et al. Carson. Activation of anti-hepatitis C virus responses via Toll-like receptor 7. (2006) PNAS. 103, 1828–1833. 95. Hemmi H, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. (2002) Nat Immunol. 3, 196-200. 96. Fishelevich R, et al. Imiquimod-induced TLR7 signaling enhances repair of DNA damage induced by ultraviolet light in bonemarrow-derived cells.(2011) Immunol.J 187(4):1664-73. 97. Szeimies RM, et al. A phase II dose-ranging study of topical resiquimod to treat actinic keratosis.(2008)Br J Dermatol. 159(1):205-10. 98. Wu JJ, Huang DB, Tyring SK.Resiquimod: a new immune response modifier with potential as a vaccine adjuvant for Th1 immune responses.(2004)Antiviral Res. 64(2):79-83. 99. Fife KH, Meng TC, Ferris DG, Liu P. Effect of resiquimod 0.01% gel on lesion healing and viral shedding when applied to genital herpes lesions.(2008) Antimicrob Agents Chemother. 52(2):477-82. 100. Tomai MA, et al. Resiquimod and other immune response modifiers as vaccine adjuvants.(2007)Expert Rev Vaccines. 6(5):835-47. 101. Hurst J, et al. TLR7 and TLR8 ligands and antiphospholipid antibodies show synergistic effects on the induction of IL-1beta and caspase-1 in monocytes and dendritic cells.(2009)Immunobiology. 214(8):683-91. 102. Zagon IS, et al. Imiquimod upregulates the opioid growth factor receptor to inhibit cell proliferation independent of immune function. ( 2008 ) Exp Biol Med (Maywood). 233(8):968-79. 103. Klaude M, et al. The comet assay: mechanisms and technical considerations. (1996)Mutation Research. 363(2): 89-96. 104. Collins AR, et al. The comet assay: what can it really tell us? (1997) Mutation Research. 375(2): 183-193. 105. Nestle FO, et al. Psoriasis.(2009)The New England journal of medicine. 361(5):496-509 106. Huang SW, et al. Imiquimod simultaneously induces autophagy and apoptosis in human basal cell carcinoma cells.(2009)Br J Dermatol. 163(2):310-20. 107. Sarkaria JN, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine.(1999)Cancer Res. 59(17):4375-82. 108. Hall-Jackson CA, Cross DA, Morrice N, Smythe C.ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK.(1999)Oncogene. 18(48):6707-13. 109. Cortez D. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases.(2003)J Biol Chem. 278(39):37139-45. 110. Alao JP, Sunnerhagen P. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation.(2009)Radiat Oncol. Nov 10;4:51. doi: 10.1186/1748-717X-4-51. 111. Shieh SY, et al. DNA damage-induced phosporylation of p53 alleviates inhibition by MDM2.(1997)Cell 91(3):325-34. 112. Polyak K, et al. Amodel for p53-induced apoptosis (1997) Nature.389(6648):300-5 113. Kroemer GL, et al. Mitochondrial membrane permeabilization in cell death.(2007) Physiological reviews. 87(1):99-163. 114. Kong Q, Beel JA, Lillehei KO. A threshold concept for cancer therapy. 2000)(Med Hypotheses. 55(1):29-35. 115. Schumacker PT.Reactive oxygen species in cancer cells: live by the sword, die by the sword.(2006)Cancer Cell. 10(3):175-6. 116. Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity.(2012)J Toxicol. 2012:645460. 117. Wu X, Shell SM, Liu Y, Zou Y. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation.(2007)Oncogene. 26(5):757-64. 118. Schon M, et al. Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod.(2003)Journal of the National Cancer Institute. 95(15):1138-49. 119. Sohn KC, et al.Imiquimod induces apoptosis of squamous cell carcinoma (SCC) cells via regulation of A20.(2014)PLoS One. 9(4):e95337 120. Bennett WP,et al. Molecular epidemiology of human cancer risk:gene-environment interactions and p53 mutation spectrum in human lung cancer.(1999)The Journal of pathology.187(1):8-18. 121. Korwek Z, et al. Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells.(2012)DNA Repair (Amst). 11(11):864-73. 122. Deiry WS, et al. WAF1,a potential mediator of p53 tumor suppression.(1993) Cell.75(4):817-25. 123. Bode AM and Dong Z. Post-translational modification of p53 in tumorigenesis.(2004)Cancer. 4(10):793-805. 124. Smirnov S, Johnson F, Marumoto R, de los Santos C.Structure of an 11-mer DNA duplex containing the carbocyclic nucleotide analog: 2'-deoxyaristeromycin.(2000)J Biomol Struct Dyn. 17(6):981-91. 125. Dunkern TR, et al. Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling.(2003)DNA Repair. 2(1):49-60. 126. Gilliet M, et al. Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors.(2004)Archives of dermatological research. 140(12):1490-95. 127. Chong HT, et al. Lifting the silver flakes:the pathogenesis and management of chronic plaque psoriasis. BioMed Research International ( 2013 ) doi:10.1155/2013/168321. 128. Tortola L, et al. Psoriasifrom dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. ( 2012 ) The Journal of Clinical Investigation. 122(11):3965-76. 129. Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability.(2011)Nat Rev Mol Cell Biol. 12(6):385-92. 130. Vitale I1, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability.(2011)Nat Rev Mol Cell Biol. 12(6):385-92. 131. Ravikumar B, et al. Rapamycin pre-treatment protects against apoptosis. (2006) Hum. Mol. Genet. 15, 1209–1216. 132. Colell, A. et al. GAPDH and autophagy preserve cellular survival during caspase-independent cell death.(2007)Cell 129, 983–997. 133. Cowell IG et al. Human topoisomerase IIa and IIbinteract with the C-terminal region of p53, Exp. (2000) Cell Res. 25586–94. 134. Gasser S, et al. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor.(2005)Nature. 436(7054):1186-90.
摘要: 
由於 DNA 是生物重要遺傳指令分子,維持 DNA 的完整性對細胞乃至整個 生物個體可說是極為重要的一環。外在環境的因素或是由生物體內源性所產生的 內生性破壞,都有可能造成 DNA 的損傷。目前在許多的癌症用藥上,會針對癌 細胞造成 DNA 損傷,例如形成 DNA 加合物(DNA adducts),或是 DNA 鏈斷 裂而導致基因體的不穩定性。這些 DNA 損傷反應會導致 DNA 的修復、衰老, 或凋亡。Imiquimod 是化學合成的核酸類似物,並且是類鐸受體 7 (Toll-like receptor 7,TLR7)、類鐸受體 8 (Toll-like receptor 8,TLR8)的配合體(ligand), 亦是免疫調節劑,目前在臨床上用來治療基底細胞癌(basal cell carcinoma,BCC)、 日光角化症等皮膚腫瘤和病毒疣。近期研究指出Imiquimod可直接毒殺腫瘤細胞或 透過活化細胞型免疫反應(cellular-mediated immune response)清除腫瘤細胞,且 被認為可以調控細胞自噬以及細胞凋亡的進行。然而 Imiquimod 是否能造成 DNA 損傷的機制仍不明瞭,在我們的研究中證明,從皮膚細胞的 DNA 鏈斷裂、 磷酸化 H2AX 的蛋白表現增加,以及在小鼠背部細胞形成磷酸化 H2AX 的 foci 中可得知 Imiquimod 的確能造成 DNA 損傷,且此現象在 in vitro 和 in vivo 都 得到相同的結果。且此結果不依 TLR7/TLR8 。實驗室證實了Imiquimod 所誘導 的 DNA 損傷機制是透過磷酸化 ATM/ATR,以及其下游磷酸化 Chk1/Chk2、 Ser15-p53,和 p53 的蛋白表現及基因表現增加之外,也促進 p53 轉至入核的表 現。假如抑制 ATM/ATR,會影響其下游以及 p53 基因表現,和抑制細胞凋亡。 最後,我們發現 Imiquimod 所誘導的細胞凋亡是依賴於 p53,且在 shRNA knock down 或是突變(mutant)p53的皮膚細胞中發現會抑制 Imiquimod 所誘導的細胞 凋亡。有趣的是,Imiquimod 在沒有 TLR7/TLR8 的皮膚癌細胞會形成 DNA 環 丁基環(cyclobutane ring)dimer。這是第一次提到 Imiquimod 有潛力成為一種 DNA損傷劑。此研究完成我們將可提供有關 Imiquimod 誘導 DNA 損傷與 p53 功能和細胞凋亡間相關性的確鑿證據。這一新發現不僅有助理解 Imiquimod 誘導 細胞凋亡的機制,在臨床應用中也有利於我們重新考慮 Imiquimod 的安全性和相 對風險,並謹慎使用於特定的癌症治療上。

DNA is the macromolecules which encode genetic instructions, therefore, maintaining the genomic DNA integrity and stability is very important in all living organisms. DNA damage could be caused by environmental and endogenous factors. Indeed, induction of DNA damage by chemotherapeutic agents is wild-used in clinical cancer therapy. Certain chemotherapeutic agents cause DNA damages, such as DNA adduct, strand break and result in genomic instability. These DNA damage responses lead to DNA repair, senescence or apoptosis. Imiquimod (IMQ), a synthetic Toll-like receptor 7/8 (TLR7/8) ligand, contains both antitumor activity by directly inducing tumor cell death and by activation of cellular-mediated immune response to against tumors. IMQ had been clinical used in viral warts, actinic keratosis, basal cell carcinoma (BCC) and several skin tumors. IMQ also directly induces autophagy and apoptosis in the BCC cells. However, whether the IMQ could induce DNA damage is still unclear. In this study, we demonstrated that IMQ induced DNA double strand break, H2AX expression and H2AX foci accumulation in human skin cell lines and in upper layer of mouse epidermis. These effects were not dependent on TLR7/8 expression. IMQ also induced DNA damage response, including increased phosphor-ATM/ATR and their downstream phosphor-Chk1/Chk2 expression that promoting p53 expression, phosphorylation, nuclear translocalization and up-regulation of p53 target genes. Pharmacological inhibition of ATM/ATR suppressed ATM/ATR-Chk1/Chk2-p53 axis and prevented apoptosis in IMQ-treated cells. Finally, we provided evidence that IMQ induced apoptosis was dependent on p53, those p53 knock-down and p53 mutant skin cancer cells were much resistant to the IMQ induced apoptosis. Interestingly, IMQ also induced cyclobutane ring dimer formation, enhanced XPA expression and nuclear translocalization in TLR7/8-negative skin cell lines. As our knowledge, this is the first time to mention that the IMQ has the potential to be a DNA damage agent. This novel finding may help us to understand and reconsider the safety and relative risk of IMQ application, cautiously apply IMQ to specific cancer population in clinical and provide a promising approach to facilitate the development of novel therapeutic strategies for IMQ-tumor therapy in basic cancer research and in clinical application.
URI: http://hdl.handle.net/11455/92297
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生物醫學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101059016-1.pdf4.97 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.