Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92337
標題: 物料搬運系統指派法則與廠房佈置之模擬研究
A Study of Simulating Material Handling System and Layout Design
作者: Zih-Yun Jhang
張子云
關鍵字: Automated Material Handling System;Dispatching rule;Layout;System simulation;自動化物料搬運系統;指派法則;硬體佈置;系統模擬
引用: 一、中文部分 (1)圖書與期刊論文 陳明德、葉丁鴻(2010)。作業管理:管控QCD之鑰。臺北市:雙葉。 陳文哲、劉樹童(1991)。工廠佈置與物料搬運。臺北市:中興管理顧問。 張有恆(2005)。現代運輸學。臺北市:華泰。 葉清江、賴明政(2009)。物流與供應鏈管理。臺北縣:全華。 國家教育研究院(1997)。再回流生產系統中考慮交期之排程探討。桃園縣:林建忠、江瑞清。 何應欽(譯)(2011)。作業管理。臺北市:滄海。(Stevenson, William J., 2011)。 王俊程、王偉驎、林均燁、黃志明(譯)(2006)。自動化生產系統。臺北縣:高立。 施惠雅、李壽南、顏紹儀、呂建豪(2006)。微污染控制之成功案例。先進封裝與測試技術專文。新竹縣:工業技術研究院能源與環境研究所。 (2)網路資源 劉美君(2013a)。2013年全球大型TFT_LCD產業分析。2013年7月,取自工業技術研究院,IEK產業情報網http://ieknet.iek.org.tw/ 劉美君(2013b)。2012年全球前三大之台灣產業產品-大型TFT_LCD面板。2013年6月,取自工業技術研究院,IEK產業情報網http://ieknet.iek.org.tw/ 何致中(2013)。新款iPad mini高解析面板良率未解 LGD推給夏普。2013年10月,取自DigiTimes電子時報http://www.digitimes.com.tw/ 友達光電公司網站http://auo.com.tw/?sn=15&lang=zh-TW 奇美電子公司網站http://www.chimei.com.tw/ 二、英文部分 (1)Books & Journal Paper ALEISA, E. E. & LIN, L. 2005 For effective facilities planning: layout optimization then simulation, or vice versa? Simulation Conference, Proceedings of the Winter, 2005. IEEE, 1381-1385. BLACKSTONE, J. H., PHILLIPS, D. T. & HOGG, G. L. 1982. A state-of-the-art survey of dispatching rules for manufacturing job shop operations. The International Journal of Production Research, 20, 27-45. BOZER, Y. A. & SRINIVASAN, M. M. 1989. Tandem configurations for AGV systems offer simplicity and flexibility. Industrial Engineering, 21, 23-27. DE KOSTER, R., LE-ANH, T. & VAN DER MEER, J. R. 2004. Testing and classifying vehicle dispatching rules in three real-world settings. Journal of Operations Management, 22, 369-386. DRIRA, A., PIERREVAL, H. & HAJRI-GABOUJ, S. 2007. Facility layout problems: A survey. Annual Reviews in Control, 31, 255-267. EGBELU, P. J. & TANCHOCO, J. M. 1984. Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22, 359-374. GASKINS, R. & TANCHOCO, J. M. 1987. Flow path design for automated guided vehicle systems. International Journal of Production Research, 25, 667-676. HOLTHAUS, O. 1997. Design of efficient job shop scheduling rules. Computers & industrial engineering, 33, 249-252. JEONG, B. H. & RANDHAWA, S. U. 2001. A multi-attribute dispatching rule for automated guided vehicle systems. International Journal of Production Research, 39, 2817-2832. LE-ANH, T. & DE KOSTER, M. 2006. A review of design and control of automated guided vehicle systems. European Journal of Operational Research, 171, 1-23. LIN, J. T., WANG, F.-K. & YEN, P.-Y. 2001. Simulation analysis of dispatching rules for an automated interbay material handling system in wafer fab. International Journal of Production Research, 39, 1221-1238. NAKAJIMA, S. 1988. Introduction to TPM: total productive maintenance, Productivity Press Cambridge, MA. NAKAJIMA, S. 1989. TPM development program: implementing total productive maintenance, Productivity. PARTHANADEE, P. & BUDDHAKULSOMSIRI, J. 2010. Simulation modeling and analysis for production scheduling using real-time dispatching rules: A case study in canned fruit industry. Computers and electronics in agriculture, 70, 245-255. RAJENDRAN, C. & HOLTHAUS, O. 1999. A comparative study of dispatching rules in dynamic flowshops and jobshops. European Journal of Operational Research, 116, 156-170. SALEHIPOUR, A. & SEPEHRI, M. M. 2014. Optimal location of workstations in tandem automated-guided vehicle systems. The International Journal of Advanced Manufacturing Technology, 72, 1429-1438. SINRIECH, D. & TANCHOCO, J. 1993. Solution methods for the mathematical models of single-loop AGV systems. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 31, 705-725. STEVENSON, W. J., & OZGUR, C. 2006. Introduction to Management Science with Spreadsheets and Student CD. McGraw-Hill, Inc. TANCHOCOF, J. & SINRIECH, D. 1992. OSL—optimal single-loop guide paths for AGVS. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 30, 665-681. TOMPKINS, J., WHITE, J., BOZER, Y., FRAZELLE, E., TANCHOCO, J. & TREVINO, J. 1996. Facilities planning, Wiley, New York. (2)Internet Resources Material Handling Institute, 2000, http://www.mhi.org/
摘要: 
Automated Material Handling System (AMHS) plays a key role in manufacturing. The main purpose of an AMHS is to improve the performance of the overall fabrication process by optimizing material deliveries to the required areas during the fabrication cycle. The quality of an AMHS is definitely a key factor to smooth production.
Thin Film Transistor Liquid Crystal Display (TFT-LCD) is one of the industries which develop rapidly in recent years and it also has three features capital-intensity, technology-intensity and short business cycle. Manufacturer needs to have the ability of reacting with the market quickly, good producing technology, high quality and delivery rates to make it grow and earn profits. Therefore, the capacity of manufacturer is a very important index. Manufacturer has to make an efficient plan on all the resources, coordinate and control the resources well. Moreover, it needs to search the economic activities with low-cost and high efficiency.
In automated manufacturing, the transmission performance in operating system will affect the efficiency of the production system directly. To improve the handling efficiency, this study builds the manufacturing and handling process fitting the real situation and explores different ways in dispatching rule and facility layout to figure out the best solution. In this study, we discuss four dispatching rules and four layout strategies. In order to find the optimal solution, we compare and analyze all the alternatives based on four performance criteria, which include entity, process, queue and resource.
According to the simulation analysis, we can learn that the Enhance Machine Utilization is the best dispatching rule. Moreover, the improvement of entity and process criteria is the best in that dispatching rule. However, when the number of automated guided vehicles increases, the efficiency of the material handling system becomes obviously better. It means that it is not very helpful in improving performance of choosing which layout or dispatching rule when we fulfill the most important resource which we didn't have in the previous process. And in performance, the strategies of software and hardware have different improvement. The improving range is twice to three times in using hardware than using software. If we want to have a better performance, we also need to increase the expense of fixed cost. Managers should take the short-term, midterm and long-term targets as considerations, simulate, select and integrate the most suitable strategy to promote product competitiveness and the optimization of economies of scale.

自動化物料搬運系統在製造廠中扮演著極重要之角色,一套高效率的系統將能節省人工成本、減少流程時間以及提高設備使用率,對於製造廠中的生產與運搬效率具有關鍵性的影響,因此被廣泛的應用於半導體晶圓廠或面板廠中。
其中薄膜電晶體液晶顯示器(TFT-LCD)為近年來發展快速的產業之一,且具有資本、技術密集和景氣循環週期短的特性。製造商必須擁有快速反應市場的能力、良好的生產技術、極高的品質良率及交貨率,才能使其成長與獲利,因此製造商的製造產能是一項極為重要的指標。製造商必須將內、外部資源做有效的規劃、協調與控制,並追尋低成本、高效率的經濟活動。
在自動化製程中,搬運系統中的傳送效能會直接影響到生產系統的效率。為改善搬運效率,本研究係針對自動化物料搬運系統中無人搬運車的指派法則與廠房硬體佈置,提出一整合性之方法。研究首先透過模擬方式建構出符合現況之系統原始模型,並分別研擬與探討指派法則與硬體佈置策略下的績效表現,包含使用物件、流程、等候線和資源設備四大績效衡量指標與原始模型進行比較與分析,以便求得最佳解決策略與未來改善搬運效能的參考依據。
本研究中以產品別佈置、自動化物料搬運系統、區域式的路徑佈置以及搬運車為主的指派法則等四項做為模型依據,經由模擬驗證分析後,可得知在軟體指派法則中,整體而言提升生產機台使用率為較佳的指派法則,其中在物件與流程指標中改善程度為最佳;而在硬體廠房佈置中,當無人搬運車數量增加時,整體物料搬運系統的效率即有明顯的改善,此現象可推測當原先製程中主要所缺乏的資源設備已被滿足時,對於後續選用何種佈置策略或指派法則在績效改善上已無明顯的助益。總結在總體績效衡量的表現上,軟體與硬體策略分別有不同程度的改善,使用硬體改善幅度約為軟體改善幅度的二~三倍,若要追求較佳的績效表現,則需考量到固定成本的增加。為提升製造商的競爭力與規模經濟之最佳化,管理者應將短程、中程與長程目標皆納入考量,並在各階段中研擬、選擇及整合最佳配適策略。
URI: http://hdl.handle.net/11455/92337
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:企業管理學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101023017-1.pdf3.51 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.