Please use this identifier to cite or link to this item:
標題: 利用B細胞抗原決定位和N醣基化位點探討A型流感廣用型疫苗設計之研究
A Study of Universal Vaccine Target Design for Influenza A Viruses by N-linked Glycosylation Sites and B-cell Epitopes
作者: Li-Ting Wong
關鍵字: Hemagglutinin;Neuraminidase;N-linked glycosylation;Linear B-cell epitope;紅血球凝集素;神經胺酸酶;N醣基化;B細胞線性抗原決定位
引用: 1. Zhang, H., et al., Universal influenza vaccines, a dream to be realized soon. Viruses, 2014. 6(5): p. 1974-91. 2. Johnson, N.P. and J. Mueller, Updating the accounts: global mortality of the 1918-1920 'Spanish' influenza pandemic. Bull Hist Med, 2002. 76(1): p. 105-15. 3. Garten, R.J., et al., Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science, 2009. 325(5937): p. 197-201. 4. Steinhauer, D.A. and J.J. Skehel, Genetics of influenza viruses. Annu Rev Genet, 2002. 36: p. 305-32. 5. Kasowski, E.J., R.J. Garten, and C.B. Bridges, Influenza pandemic epidemiologic and virologic diversity: reminding ourselves of the possibilities. Clin Infect Dis, 2011. 52 Suppl 1: p. S44-9. 6. Noah, D.L. and J.W. Noah, Adapting global influenza management strategies to address emerging viruses. Am J Physiol Lung Cell Mol Physiol, 2013. 305(2): p. L108-17. 7. Shapshak, P., et al., The influenza pandemic of 2009: lessons and implications. Mol Diagn Ther, 2011. 15(2): p. 63-81. 8. Parham, P., The immune system. 2009: Garland Science. 111. 9. Wilson, I.A. and N.J. Cox, Structural basis of immune recognition of influenza virus hemagglutinin. Annual review of immunology, 1990. 8(1): p. 737-787. 10. Skehel, J.J. and D.C. Wiley, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem, 2000. 69: p. 531-69. 11. Knossow, M., et al., Mechanism of neutralization of influenza virus infectivity by antibodies. Virology, 2002. 302(2): p. 294-8. 12. Nelson, M.I. and E.C. Holmes, The evolution of epidemic influenza. Nature reviews genetics, 2007. 8(3): p. 196-205. 13. Earn, D.J., J. Dushoff, and S.A. Levin, Ecology and evolution of the flu. Trends in ecology & evolution, 2002. 17(7): p. 334-340. 14. Hampson, A.W., Influenza virus antigens and 'antigenic drift'. Perspectives in Medical Virology, 2002. 7: p. 49-85. 15. Smith, D.J., et al., Mapping the antigenic and genetic evolution of influenza virus. Science, 2004. 305(5682): p. 371-376. 16. Russell, C.A., et al., Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine, 2008. 26: p. D31-D34. 17. Narayan, O., D. Griffin, and J. Chase, Antigenic shift of visna virus in persistently infected sheep. Science, 1977. 197(4301): p. 376-378. 18. Treanor, J., Influenza vaccine—outmaneuvering antigenic shift and drift. New England Journal of Medicine, 2004. 350(3): p. 218-220. 19. Belshe, R.B., The origins of pandemic influenza—lessons from the 1918 virus. New England Journal of Medicine, 2005. 353(21): p. 2209-2211. 20. Kawaoka, Y., S. Krauss, and R.G. Webster, Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of virology, 1989. 63(11): p. 4603-4608. 21. Viboud, C., et al., Multinational impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering pandemic. Journal of Infectious Diseases, 2005. 192(2): p. 233-248. 22. Neumann, G., T. Noda, and Y. Kawaoka, Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009. 459(7249): p. 931-939. 23. Gao, R., et al., Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 2013. 368(20): p. 1888-97. 24. Mei, L., et al., Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans. Biosci Trends, 2013. 7(2): p. 64-76. 25. Carrat, F. and A. Flahault, Influenza vaccine: the challenge of antigenic drift. Vaccine, 2007. 25(39): p. 6852-6862. 26. Hubl, U., et al., BIOTRANSFORMATION USING RECOMBINANT CMP SIALIC ACID SYNTHETASE AND α-2, 6-SIALYLTRAN SFERASE: ENZYMATIC SYNTHESIS OF SIALOSIDES. American Journal of Biochemistry & Biotechnology, 2012. 8(4). 27. Schauer, R., Sialic acids: fascinating sugars in higher animals and man. Zoology, 2004. 107(1): p. 49-64. 28. Malykh, Y.N., R. Schauer, and L. Shaw, N-Glycolylneuraminic acid in human tumours. Biochimie, 2001. 83(7): p. 623-634. 29. de Graaf, M.F.R.A.M., Role of receptor binding specificity in influenza A virus transmission and pathogenesis. The EMBO Journal, 2014. 33(8): p. 823-841. 30. Hayashida, H., et al., Evolution of influenza virus genes. Molecular biology and evolution, 1985. 2(4): p. 289-303. 31. Hayashida, H., et al., Evolution of influenza virus genes. Mol Biol Evol, 1985. 2(4): p. 289-303. 32. Russell, R.J., et al., The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature, 2006. 443(7107): p. 45-49. 33. Wang, L., et al., Universal Influenza Vaccines-A Short Review. Journal of Immunology & Clinical Research, 2013. 34. Varki, A., Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature, 2007. 446(7139): p. 1023-1029. 35. Varki, N.M. and A. Varki, Diversity in cell surface sialic acid presentations: implications for biology and disease. Laboratory investigation, 2007. 87(9): p. 851-857. 36. Ichikawa, S., et al., A mouse B16 melanoma mutant deficient in glycolipids. Proceedings of the National Academy of Sciences, 1994. 91(7): p. 2703-2707. 37. Ablan, S., et al., Entry of influenza virus into a glycosphingolipid-deficient mouse skin fibroblast cell line. Archives of virology, 2001. 146(11): p. 2227-2238. 38. Chu, V.C. and G.R. Whittaker, Influenza virus entry and infection require host cell N-linked glycoprotein. Proceedings of the National Academy of Sciences, 2004. 101(52): p. 18153-18158. 39. Matrosovich, M.N., et al., Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology, 1997. 233(1): p. 224-34. 40. Wagner, R., et al., Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol, 2000. 74(14): p. 6316-23. 41. Hidari, K.I., et al., Binding kinetics of influenza viruses to sialic acid-containing carbohydrates. Glycoconjugate journal, 2007. 24(9): p. 583-590. 42. Mahy, B.W. and M.H. Van Regenmortel, Encyclopedia of virology. 2008. 43. Schaechter, M., Encyclopedia of microbiology. 2009: Academic Press. 44. Suzuki, Y., Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull, 2005. 28(3): p. 399-408. 45. Stevens, J., et al., Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat Rev Microbiol, 2006. 4(11): p. 857-64. 46. Min, J.Y. and K. Subbarao, Cellular targets for influenza drugs. Nat Biotechnol, 2010. 28(3): p. 239-40. 47. WHO, WHO guidelines on the use of vaccines and antivirals during influenza pandemics. 2004. 51: p. 5. 48. WHO, WHO position paper influenza vaccines. The Weekly Epidemiological Record, 2005. 36: p. 277-288. 49. Lee, M.-S. and J.S.-E. Chen, Predicting antigenic variants of influenza A/H3N2 viruses. Emerging infectious diseases, 2004. 10(8): p. 1385. 50. Finkenstadt, B., A. Morton, and D. Rand, Modelling antigenic drift in weekly flu incidence. Statistics in medicine, 2005. 24(22): p. 3447-3461. 51. Cox, N.J., T.L. Brammer, and H.L. Regnery, Influenza: global surveillance for epidemic and pandemic variants. Eur J Epidemiol, 1994. 10(4): p. 467-70. 52. Fitch, W.M., et al., Long term trends in the evolution of H (3) HA1 human influenza type A. Proceedings of the National Academy of Sciences, 1997. 94(15): p. 7712-7718. 53. Gerdil, C., The annual production cycle for influenza vaccine. Vaccine, 2003. 21(16): p. 1776-9. 54. De Clercq, E., Antiviral agents active against influenza A viruses. Nature Reviews Drug Discovery, 2006. 5(12): p. 1015-1025. 55. Zhang, Q., et al., Immune epitope database analysis resource (IEDB-AR). Nucleic acids research, 2008. 36(suppl 2): p. W513-W518. 56. Singh, H., H.R. Ansari, and G.P.S. Raghava, Improved Method for Linear B-Cell Epitope Prediction Using Antigen's Primary Sequence. PLoS ONE, 2013. 8(5): p. e62216. 57. Wu, Z.L., et al., Active 1918 pandemic flu viral neuraminidase has distinct N-glycan profile and is resistant to trypsin digestion. Biochem Biophys Res Commun, 2009. 379(3): p. 749-53. 58. Das, S.R., et al., Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog, 2010. 6(11): p. e1001211. 59. Sun, S., et al., Prediction of Biological Functions on Glycosylation Site Migrations in Human Influenza H1N1 Viruses. PLoS ONE, 2012. 7(2): p. e32119. 60. Sun, S., et al., Glycosylation site alteration in the evolution of influenza A (H1N1) viruses. PloS one, 2011. 6(7): p. e22844. 61. Ekiert, D.C., et al., A highly conserved neutralizing epitope on group 2 influenza A viruses. Science, 2011. 333(6044): p. 843-50. 62. Bao, Y., et al., The influenza virus resource at the National Center for Biotechnology Information. Journal of virology, 2008. 82(2): p. 596-601. 63. Edgar, R.C., MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 2004. 5: p. 113. 64. Aiyar, A., The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment, in Bioinformatics methods and protocols. 1999, Springer. p. 221-241. 65. Thompson, J.D., T. Gibson, and D.G. Higgins, Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics, 2002: p. 2.3. 1-2.3. 22. 66. Chenna, R., et al., Multiple sequence alignment with the Clustal series of programs. Nucleic acids research, 2003. 31(13): p. 3497-3500. 67. Larkin, M.A., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007. 23(21): p. 2947-2948. 68. Tamura, K., et al., MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 2013. 30(12): p. 2725-2729. 69. Heiny, A., et al., Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PloS one, 2007. 2(11): p. e1190. 70. Miotto, O., et al., Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC bioinformatics, 2008. 9(Suppl 1): p. S18. 71. Zhang, M., et al., Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology, 2004. 14(12): p. 1229-46. 72. Shih, A.C., et al., Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences. BMC Bioinformatics, 2007. 8: p. 63. 73. Sun, J., et al., Large-scale analysis of B-cell epitopes on influenza virus hemagglutinin - implications for cross-reactivity of neutralizing antibodies. Front Immunol, 2014. 5: p. 38. 74. Pica, N. and P. Palese, Toward a universal influenza virus vaccine: prospects and challenges. Annu Rev Med, 2013. 64: p. 189-202. 75. Tong, S., et al., New world bats harbor diverse influenza A viruses. PLoS Pathog, 2013. 9(10): p. e1003657. 76. Tharakaraman, K., et al., Glycan Receptor Binding of the Influenza A Virus H7N9 Hemagglutinin. Cell, 2013. 153(7): p. 1486-1493. 77. Li, Q., et al., The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol, 2010. 17(10): p. 1266-8. 78. McKimm-Breschkin, J.L., Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respir Viruses, 2013. 7 Suppl 1: p. 25-36. 79. Dreyfus, C., D.C. Ekiert, and I.A. Wilson, Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 influenza virus hemagglutinin. J Virol, 2013. 87(12): p. 7149-54. 80. Nakamura, G., et al., An In Vivo Human-Plasmablast Enrichment Technique Allows Rapid Identification of Therapeutic Influenza A Antibodies. Cell Host & Microbe, 2013. 14(1): p. 93-103. 81. Wu, Y., et al., Bat-derived influenza-like viruses H17N10 and H18N11. Trends in Microbiology, 2014. 22(4): p. 183-191.
Influenza A virus, RNA virus, leads humans and animals to suffer from pandemic flu, which belongs orthomyxoviridae and with many subtypes that caused from the antigenic drift of hemagglutination and neuraminidase. It rapidly infects the upper respiratory tract of human by air spread and causes cyclical pandemic flu around the world. However, in the current studies of vaccine, there is not any discussion about these three features that includes sequence conservation, linear B cell epitope and N-linked glycosylation of post-translational modification for identifying the consensus sequence of the subtypes of influenza A virus. This research discovered the consensus sequences of surface proteins of representative strains of influenza A viruses, we integrated the existing bioinformatics tools for analyzing virus protein sequences by three directions that included sequence conservation, linear B cell epitope and N-linked glycosylation of post-translational modification. After consensus sequences were found, Phylo-mLogo and were used to observe the variation of amino acid in the consensus sequences and further verify these results. Finally, the consensus sequences compared with existing antibodies and drugs by protein structures and then the consensus sequences we selected can provide useful information for universal vaccine design in the future.

其他識別: U0005-1001201517462600
Rights: 同意授權瀏覽/列印電子全文服務,2018-01-19起公開。
Appears in Collections:基因體暨生物資訊學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101019014-1.pdf10.59 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.