Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92522
標題: 使用情緒分析於社群論壇消費者評論滿意度評估之研究—以TripAdvisor旅遊網站為例
A Study on Satisfaction Evaluation by Community Platforms' Consumer Review Using Sentiment Analysis─A Case Study of TripAdvisor
作者: Hsiu-Wen Yu
游綉雯
關鍵字: 情緒分析;消費者評論;大數據;TripAdvisor;sentiment analysis;consumer review;big data;TripAdvisor
引用: IDC台灣官方網站, 2015, 檢索自http://www.idc.com.tw/. Tripdvisor官方網站, 2015, 檢索自 http://www.tripadvisor.com/. 張育蓉(2012). 使用情緒分析於圖書館使用者滿意度評估之研究. 碩博士論文. 檢索自 http://ir.lib.nchu.edu.tw/bitstream/309270000/154649/1/nchu-101-7097014004-1.pdf 葉乃嘉, 從社群媒體洞察消費趨勢-談Big Data 情感分析, IEK產業情報網, 2013.09, 檢索自http://ieknet.iek.org.tw/BookView.do?domain=6&rptidno=129080477 Archak, N., Ghose, A., & Ipeirotis, P. G. (2007). Show me the money!: deriving the pricing power of product features by mining consumer reviews. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 56–65). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1281202 Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In LREC (Vol. 10, pp. 2200–2204). Retrieved from http://www.researchgate.net/profile/Fabrizio_Sebastiani/publication/220746537_SentiWordNet_3.0_An_Enhanced_Lexical_Resource_for_Sentiment_Analysis_and_Opinion_Mining/links/545fbcc40cf27487b450aa21.pdf Berger, J., & Milkman, K. L. (2012). What Makes Online Content Viral? Journal of Marketing Research, 49(2), 192–205. doi:10.1509/jmr.10.0353 Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31–40. Bollier, D., & Firestone, C. M. (2010). The promise and peril of big data (p. 56). Washington, DC, USA: Aspen Institute, Communications and Society Program. Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, 15(5), 662-679. doi:10.1080/1369118X.2012.678878 Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings (pp. 1-45). Technical Report C-1, The Center for Research in Psychophysiology, University of Florida. Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of 'big data'? (cover story). Mckinsey Quarterly, (4), 24-35 Buhalis, D., & Licata, M. C. (2002). The future eTourism intermediaries. Tourism management, 23(3), 207-220. Burkholder, L. (1992) . Philosophy and the Computer. Westview Press. Boulder. San Francisco, and Oxford. Carneiro, H. A., & Mylonakis, E. (2009). Google Trends: A Web‐Based Tool for Real‐Time Surveillance of Disease Outbreaks. Clinical Infectious Diseases, 49(10), 1557–1564. Retrieved from http://doi.org/10.1086/630200 Carrera, P., Chiu, C.-Y., Pratipwattanawong, P., Chienwattanasuk, S., Ahmad, S. F. S., & Murphy, J. (2008). MySpace, my friends, my customers. Information and Communication Technologies in Tourism 2008, 94–105. Chamlertwat, W., Bhattarakosol, P., Rungkasiri, T., & Haruechaiyasak, C. (2012). Discovering Consumer Insight from Twitter via Sentiment Analysis. J. UCS, 18(8), 973–992. Chen, Y., & Xie, J. (2005). Third-Party Product Review and Firm Marketing Strategy. Marketing Science, 24(2), 218–240. Retrieved from http://doi.org/10.1287/mksc.1040.0089 Chen, Y., & Xie, J. (2008). Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix. Management Science, 54(3), 477–491. Retrieved from http://doi.org/10.1287/mnsc.1070.0810 Cheong, M., & Lee, V. C. S. (2011). A microblogging-based approach to terrorism informatics: Exploration and chronicling civilian sentiment and response to terrorism events via Twitter. Information Systems Frontiers, 13(1), 45–59. Retrieved from http://doi.org/10.1007/s10796-010-9273-x Chevalier, J. A., & Mayzlin, D. (2006). The Effect of Word of Mouth on Sales Online book sales. Journal of Marketing Research Vol. XLIII, 345-354. Choi, H., & Varian, H. (2012). Predicting the present with google trends. Economic Record, 88(s1), 2–9. Choi, Y., Cardie, C., Riloff, E., & Patwardhan, S. (2005). Identifying sources of opinions with conditional random fields and extraction patterns. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing (pp. 355–362). Association for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=1220620 Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD skills: new analysis practices for big data. Proceedings of the VLDB Endowment, 2(2), 1481–1492. Collins, C., Hasan, S., & Ukkusuri, S. V. (2013). A Novel Transit Rider Satisfaction Metric: Rider Sentiments Measured from Online Social Media Data.pdf. Journal of Public Transportation, Vol. 16, No. 2. Cook, S., Conrad, C., Fowlkes, A. L., & Mohebbi, M. H. (2011). Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic. PLoS ONE, 6(8), e23610. Retrieved from http://doi.org/10.1371/journal.pone.0023610 D'Amuri, F., & Marcucci, J. (2010). 'Google it!'Forecasting the US unemployment rate with a Google job search index. ISER, University of Essex. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1594132 Denecke, K. (2008). Using sentiwordnet for multilingual sentiment analysis. In Data Engineering Workshop, 2008. ICDEW 2008. IEEE 24th International Conference on (pp. 507–512). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4498370 Denecke, K. (2009). Are SentiWordNet scores suited for multi-domain sentiment classification? In Digital Information Management, 2009. ICDIM 2009. Fourth International Conference on (pp. 1–6). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5356764 Devitt, A., & Ahmad, K. (2007). Sentiment polarity identification in financial news: A cohesion-based approach. Retrieved from http://edepositireland.ie/handle/2262/25729 Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. In Proceedings of the 2008 International Conference on Web Search and Data Mining (pp. 231–240). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1341561 Esuli, A., & Sebastiani, F. (2006). Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings of LREC (Vol. 6, pp. 417–422). Citeseer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.380.8135&rep=rep1&type=pdf Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82–89. Gan, Q., & Yu, Y. (2015). Restaurant Rating: Industrial Standard and Word-of-Mouth A Text Mining and Multi-dimensional Sentiment Analysis. 2015 48th Hawaii International Conference on System Sciences. Retrieved from http://conferences.computer.org/hicss/2015/papers/7367b332.pdf Godbole, N., Srinivasaiah, M., & Skiena, S. (2007). Large-Scale Sentiment Analysis for News and Blogs. ICWSM, 7, 21. Gretzel, U., & Yoo, K. H. (2008). Use and impact of online travel reviews. Information and Communication Technologies in Tourism 2008, 35–46. Guernsey, L. (2000). Suddenly, everybody's an expert on everything. The New York Times, 3. Gunter, B., Koteyko, N., & Atanasova, D. (2014). Sentiment analysis: A market-relevant and reliable measure of public feeling? International Journal of Market Research, 56(2), 231-247. doi:10.2501/IJMR-2014-014 Hansen, L. K., Arvidsson, A., Nielsen, F. Å., Colleoni, E., & Etter, M. (2011). Good friends, bad news-affect and virality in twitter. In Future information technology (pp. 34-43). Springer Berlin Heidelberg. Hardey, M. (2011). Generation C: content, creation, connections and choice. International Journal of Market Research, 53(6), 749. doi:10.2501/IJMR-53-6-749-770. Harmon, A. (2004). Amazon glitch unmasks war of reviewers. The New York Times, 14(8). Retrieved from http://www.nytimes.com/2004/02/14/technology/14AMAZ.html. Hltcoe, J. (2013). SemEval-2013 Task 2: Sentiment Analysis in Twitter. Atlanta, Georgia, USA, 312. Hu, N., Bose, I., Koh, N. S., & Liu, L. (2012). Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decision Support Systems, 52(3), 674–684. doi:10.1016/j.dss.2011.11.002 Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169–2188. doi:10.1002/asi.21149 Jeacle, I., & Carter, C. (2011). In TripAdvisor we trust: Rankings, calculative regimes and abstract systems. Accounting, Organizations and Society, 36(4-5), 293–309. http://doi.org/10.1016/j.aos.2011.04.002 Kashyap, R., & Bojanic, D. C. (2000). A structural analysis of value, quality, and price perceptions of business and leisure travelers. Journal of Travel Research, 39(1), 45–51. Kumar, N., & Benbasat, I. (2006). Research Note: The Influence of Recommendations and Consumer Reviews on Evaluations of Websites. Information Systems Research, 17(4), 425–439.Retrieved from http://doi.org/10.1287/isre.1060.0107 Lee, J., Park, D.-H., & Han, I. (2008). The effect of negative online consumer reviews on product attitude: An information processing view. Electronic Commerce Research and Applications, 7(3), 341–352. doi:10.1016/j.elerap.2007.05.004 Liu, B. (2011). Opinion mining and sentiment analysis. In Web Data Mining. Springer Berlin Heidelberg. 459-526 Liu, J., & Seneff, S. (2009). Review sentiment scoring via a parse-and-paraphrase paradigm. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1 (pp. 161–169). Association for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=1699532 Lohr, S. (2012). The age of big data. New York Times, 11. Retrieved from http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?pagewanted=all&_r=1 Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinesey & Company. Retrieved from http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation. Martineau, J., & Finin, T. (2009). Delta TFIDF: An Improved Feature Space for Sentiment Analysis. In ICWSM. Retrieved from http://www.aaai.org/ocs/index.php/ICWSM/09/paper/viewFile/187/504/ Martınez-Cámara, E., Montejo-Ráez, A., Martın-Valdivia, M. T., & Urena-López, L. A. (2013). Sinai: Machine learning and emotion of the crowd for sentiment analysis in microblogs. In Second Joint Conference on Lexical and Computational Semantics (* SEM) (Vol. 2, pp. 402–407). Retrieved from http://www.aclweb.org/anthology/S13-2#page=438 McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard business review, (90), 60-6. McGrath, G. M. (2008). Employing'social Network Analysis' to Influence Tourism Events Decision-Making: A Pilot Study. Information and Communication Technologies in Tourism 2008, 556–567. Miguéns, J., Baggio, R., & Costa, C. (2008). Social media and tourism destinations: TripAdvisor case study. Advances in Tourism Research, (Aveiro), 26-28. Retrieved from http://www.uib.es/depart/deeweb/pdi/acm/arxius/intermediacio_tfg/baggio-aveiro2.pdf Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, KDD '04, pages 168–177, New York, NY, USA. ACM. Moreira, S., Filgueiras, J., Martins, B., Couto, F., & Silva, M. J. (2013). Reaction: A naive machine learning approach for sentiment classification. In Second Joint Conference on Lexical and Computational Semantics (* SEM) (Vol. 2, pp. 490–494). Retrieved from http://www.aclweb.org/anthology/S/S13/S13-2.pdf#page=526 Mullen, T., & Malouf, R. (2006). A Preliminary Investigation into Sentiment Analysis of Informal Political Discourse. In AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs (pp. 159–162). Retrieved from http://www.aaai.org/Papers/Symposia/Spring/2006/SS-06-03/SS06-03-031.pdf Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. In Proceedings of the 2nd international conference on Knowledge capture (pp. 70–77). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=945658 Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903. O'Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From tweets to polls: Linking text sentiment to public opinion time series. ICWSM, 11, 122–129. O'Connor, P. (2008). User-generated content and travel: A case study on Tripadvisor. com. Information and Communication Technologies in Tourism 2008, 47–58. O'Hare, N., Davy, M., Bermingham, A., Ferguson, P., Sheridan, P., Gurrin, C., & Smeaton, A. F. (2009). Topic-dependent sentiment analysis of financial blogs. In Proceedings of the 1st international CIKM workshop on Topic-sentiment analysis for mass opinion (pp. 9–16). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1651464 Pak, A., & Paroubek, P. (2010). Twitter as a Corpus for Sentiment Analysis and Opinion Mining. International Journal of Electronic Commerce, 1320-1326. Pang, B. & Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Retrieved October 14, 2011. Retrieved from http://acl.ldc.upenn.edu/acl2004/main/pdf/319_pdf_2-col.pdf Pang, B. & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Information Retrieval, 2(1-2), 1-135. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79–86). Association for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=1118704 Park, D.-H., Lee, J., & Han, I. (2007). The Effect of On-Line Consumer Reviews on Consumer Purchasing Intention: The Moderating Role of Involvement. International Journal of Electronic Commerce, 11(4), 125–148. doi:10.2753/JEC1086-4415110405 Philip, R. (2011). Big Data Analytics. TDWI Best Practices Report. Retrieved from http://public.dhe.ibm.com/common/ssi/ecm/en/iml14293usen/IML14293USEN.PDF Phillips, D. M., & Baumgartner, H. (2002). The role of consumption emotions in the satisfaction response. Journal of Consumer Psychology, 12(3), 243–252. Prager, J. (2006). Open-Domain Question–Answering. Foundations and Trends® in Information Retrieval, 1(2), 91–231. doi:10.1561/1500000001 Schumaker, R. P., Zhang, Y., Huang, C.-N., & Chen, H. (2012). Evaluating sentiment in financial news articles. Decision Support Systems, 53(3), 458–464. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR), 34(1), 1-47. Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. ICWSM, 10, 178–185. Tuominen, P. (2011). The influence of TripAdvisor consumer-generated travel reviews on hotel performance. Retrieved from http://uhra.herts.ac.uk/handle/2299/7612 Turney, P. D. (2002). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 417–424). Association for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=1073153 Vermeulen, I. E., & Seegers, D. (2009). Tried and tested: The impact of online hotel reviews on consumer consideration. Tourism Management, 30(1), 123–127. Retrieved from http://doi.org/10.1016/j.tourman.2008.04.008 Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012). A system for real-time twitter sentiment analysis of 2012 us presidential election cycle. In Proceedings of the ACL 2012 System Demonstrations (pp. 115–120). Association for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=2390490 Wang, H., Lu, Y., & Zhai, C. (2010). Latent aspect rating analysis on review text data: a rating regression approach. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 783-792). ACM. Wang, H., Lu, Y., & Zhai, C. (2011). Latent aspect rating analysis without aspect keyword supervision. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 618-626). ACM. Westbrook, R. A., & Oliver, R. L. (1991). The dimensionality of consumption emotion patterns and consumer satisfaction. Journal of consumer research, 84-91. Wiebe, J., Wilson, T., & Cardie, C. (2005). Annotating Expressions of Opinions and Emotions in Language. Language Resources and Evaluation, 39(2-3), 165–210. Retrieved from http://doi.org/10.1007/s10579-005-7880-9 Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the conference on human language technology and empirical methods in natural language processing (pp. 347–354). Association for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=1220619 Xia, H., & Peng, L. (2009). SVM-based comments classification and mining of virtual community: For case of sentiment classification of hotel reviews. In Proceedings of the International Symposium on Intelligent Information Systems and Applications (pp. 507-511). Zhang, X., & Dellarocas, C. (2006). The Lord Of The Ratings: Is A Movie's Fate is Influenced by Reviews? ICIS 2006 Proceedings, 117. Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of Marketing, 74(2), 133–148. Zhu, T. T., Zhang, F. X., & Lan, M. (2013). Ecnucs: A surface information based system description of sentiment analysis in twitter in the semeval-2013 (task 2). Atlanta, Georgia, USA, 408.
摘要: 
Along with explosion of network information, the massive data have nearly 80 percent of non-structured information data (Ye, 2013). Because of the massive data set, the column-'The Age of Big Data' in The New York Times at 2012 that announced the era of Big Data has begun. Therefore, timely and cost-effectiveness of big data analytics has become common in each industry. In addition, online forums, web blogs, Twitter and Facebook were appeared, that has generated massive consumer reviews (Gunter, Koteyko, & Atanasova, 2014). Scholars have been doing research using consumer reviews, such as O'Connor et al. (2010) used Twitter's reviews to investigate US presidential election, confirmed that Twitter's reviews and Obama's supporting data similar, but this have yet to elaborate the validity of between sentiment analysis and ratings (Gunter, Koteyko, & Atanasova, 2014). Moreover, many studies investigate consumer satisfaction by asking consumers, less studies using sentiment analysis compare with satisfaction. Thus, we use online review data on TripAdvisor to do sentiment analysis, calculate sentiment score, and understand its relevance by regression analysis. Then we will classification of reviews to understand which item are consumer like, which item are consumer don't like.
This study found that sentiment score and satisfaction has validity; sentiment score can represent consumer satisfaction with the company's products or services, and also found the effect of aspect rating, satisfaction and sentiment score, 'Value' is the most important item of hotel's consumer. Only the effect of high rating's hotels' aspect rating and sentiment score, 'Service' and 'Rooms' are consumer most important item.

隨著網路資訊的爆炸,龐大的數據資料中有近80%的資料為非結構性資料(葉乃嘉, 2013),龐大的數據集,也讓《紐約時報》在2012年的專欄文章「The Age of Big Data」中正式宣布了大數據時代的來臨,因此,及時、具有成本效益的大數據(Big data)已成為各行業分析的主流。再加上線上論壇、部落格、推特(Twitter)、臉書(Facebook)等網路平台的出現,產生數量龐大的消費者評論 (Gunter, Koteyko, & Atanasova, 2014),學者紛紛使用消費者評論做研究,像是O'Connor et al. (2010)使用Twitter評論與美國總統選情做分析,證實評論與歐巴馬的支持數據相近,但情緒分析與支持率之間的效度為何卻尚未詳加說明 (Gunter, Koteyko, & Atanasova, 2014),再者,許多研究透過詢問消費者本身探討消費者的滿意度,但較少人使用情緒分析與滿意度相比較,因此,本研究使用TripAdvisor線上評論資料作情緒分析,計算出情緒分數,透過迴歸分析了解其相關性,並將評論分類了解消費者滿意不滿意之項目。
本研究證實情緒分數對於滿意度具有效度,情緒分數可代表消費者對企業的產品或服務之滿意度;並且發現七大類滿意度(Aspect Rating)與滿意度以及情緒分數的影響中,價值(Value)都是飯店消費者最重視的項目,唯有評分較高飯店七大類滿意度與情緒分數的影響中,服務(Service)與房間(Rooms)為消費者所最重視的項目。
URI: http://hdl.handle.net/11455/92522
Rights: 同意授權瀏覽/列印電子全文服務,2017-07-27起公開。
Appears in Collections:行銷學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102044022-1.pdf846.59 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.