Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92613
標題: 竹北蓮花寺濕地食蟲植物生育地之昆蟲資源
Insect resources at habitat of insectivorous plants in the wetland of Lienhwa Temple, Chu Pei, Taiwan
作者: 張光宇
Kunag-Yu Chang
關鍵字: 竹北蓮花寺濕地;食蟲植物;長葉茅膏菜;wetland of Lienhwa Temple;Insectivorous plants;Drosera indica L
引用: 1. Anderson B. , Midgley J.J., 2001. Food or sex; pollinator-prey conflict in carnivorous plants. Ecology Letters 4: 511-513. 2. Anderson B., 2010. Did Drosera evolve long scapes to stop their pollinators from being eaten. Annals of Botany 106: 653–657. 3. Hartmeyer I., Hartmeyer S. R.H., Masselter T., Poppinga1S., Seidel R., Speck T., 2012 . catapulting tentacles in a sticky carnivorous plant. plus one vol.7:1-5. Simon 4. Ishikwa K., Ohwada M., Serizawa S., Watanabe M. 2013. Genetic and morphological differentiations between pink and white-flowered types of Drosera indica(Droseraceae) inJapan. Shidekobushi 2:57-64. 5. Jurgens A., El-Sayed A.M. , Suckling D. M., 2009. Do carnivorous plants use volatiles for attracting prey insects?. Functional Ecology, 23, 875–887. 6. Libantova J.,Matušikova I., Mlynarova L., Moravcikova J., Salaj J., Nap J.P., 2005. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.)show induction of chitinase activity upon mimicking the presence of prey. Planta 222: 1020–1027. 7. Millett J., Jones R.I., Waldron S., 2003. The contribution of insect prey to the total nitrogen content of sundews (Drosera spp.) determined in situ by stable isotope analysis. New Phytologist 158:527-534. 8. Millett J., Svensson B. M., Newton J. , Rydin H., 2012. Reliance on prey-derived nitrogen by the carnivorous plant Drosera rotundifolia L. decreases with increasing nitrogen deposition. New Phytologist 195:182-188. 9. Rot K., Schauer R., 1977. Physical and chemical properties of the mucin secreted by Drosera capensis. Phytochemistry. Vol. 16, pp. 1365-1368. 10. Takahiro O., Yoshimoto I., Hitoshi M., Tomohisa O., Takashi O., 2005. An S-like ribonuclease gene is used to generate a trap-leaf enzyme in the carnivorous plant Drosera adelae. FEBS Letters 579:5729-5733. 11. Thoren L.M., Tuom J., Kamarainen T., Laine K., 2003. Resource availability affects investment in carnivory in Drosera rotundifolia. New Phytologist 159:507-511. 12. Francis Ernest Lloyd(1942)The Carnivorous Plant, Chronica Botanica Company, Waltham, Mass., U.S.A., 2-3. 13. 林春吉(2009)台灣水生與濕地植物生態大圖鑑(上)(中)(下),台北:天下遠見股份有限公司。 14. 蔡承志譯(原著:Bert Hollobler and Edward O. Wilson) (2004)。螞蟻 ‧ 螞蟻─威爾森與霍德伯勒的螞蟻探索之旅。台北。遠流出版事業股份有限公司。29-36頁。 15. 黑澤英一(1920),'台灣於けろ食蟲植物マゥゴンケ屬の種類に就て',台灣博物學會會報,第十年,第四十九號: 157-176頁 。 16. 秦思源、楊正澤、陳明義。2006。台灣中部荒廢農地昆蟲群聚與植物防疫。新世紀植物防檢疫研討會專刊。台灣昆蟲特刊 6: 293-305頁。 17. 楊正澤(2001)。森林昆蟲群聚生態功能多樣性分析─以科級分類群為基礎。農業世界。35-58頁。 18. 楊正澤(2003)。森林昆蟲群聚生態功能多樣性分析─以科級分類群為基礎」pp 35-58。「第四次野生動物研究與調查方法」研討會論文集。2003年11月07日。台北。野生動物保護基金會編。104頁。 19. 劉思謙、溫海宏、陳明義、楊正澤(2008)。台灣四種野牡丹科植物(Melastomataceae)授粉生態學之研究」。台灣昆蟲。第28期。67-85頁。 20. 劉瓊霦,葉學文。2001。氮豐富同位素分析的應用。林業研究季刊 23 (3) : 91∼101。
摘要: 
食蟲植物(insectivorous plant)是一種植物利用陷阱來捕捉並消化動物食餌,在台灣的食蟲植物中以茅膏菜科(Droseraceae)茅膏菜屬(Drosera)的長葉茅膏菜(Drocera indica L.)捕捉食餌的種類及數量最具有代表性。由於受到台灣不斷的開發破壞及大量使用除草劑,長葉茅膏菜的棲地所剩無幾,就以草原濕地型態的竹北蓮花寺濕地最具代表性。本研究就在探討台灣茅膏菜屬食蟲植物捕捉食餌的情形,並聚焦在棲地周圍的昆蟲資源調查。本研究整個流程可以分成三個階段,包括第一階段在長葉茅膏菜樣區左右側掃網捕捉昆蟲取得六個樣品,第二階段則在實驗室內作昆蟲的分類與鑑定,第三階段則分析第二階段的結果。最後被鑑定出共有43科目、187隻蟲體,另外有42隻蟲體不清楚無法鑑定。其中G1CD、G2H、NL三個位於長葉茅膏菜樣區北側取得的樣品,無論在科級多樣性及豐度普遍地要比另一側位於長葉茅膏菜樣區同樣靠南側的CDR、HR、NR取得的要高。在蓮花寺濕地活動的昆蟲群聚以昆蟲綱(Insecta)的膜翅目(Hymenoptera)、雙翅目(Diptera)及直翅目(Orthoptera)捕捉到的昆蟲數量最多、科級數量也多,而非昆蟲的蜘蛛目(Araneae)的數量也相當多,皆屬於草原性不結網的族群,並未分科。另外就捕捉最多的科別來看,蜘蛛與蟻科昆蟲最多;若以數量前五名來看,分別是蜘蛛目下的科別 (45% )、膜翅目的小蜂科(Chalcidoidea,12% )與蟻科 (Formicidae,32% )、雙翅目的蚤蠅科(Phoridae,5% )和直翅目的蝗蟲科(Acrididae,6%)。長葉茅膏菜具有充分黏著的能力並予以消化吸收昆蟲的體長上限,可以由長葉茅膏菜的葉片最大寬度加上兩邊腺毛長度的總長度10 mm來判斷。這樣的假設,可使用氮豐富同位素分析的應用 (nitrogen abundant isotope analysis)由檢視 δ15N (=15N/14N)的變化來確認。由於各個昆蟲物種在不同階段可能會出現不同的食性,以及其和植物互動關係的變動,所以在檢視長葉茅膏菜樣區的生態資源時,應同時考慮成蟲 (adult, imago)及幼蟲(larva, grub)階段的食性。由於長葉茅膏菜捕捉到的食餌皆屬於具有翅膀的成蟲,所以以成蟲的數量來建立以長葉茅膏菜為中心的生態金字塔,初級消費者以植食性的食餌為主,科級比例佔66.7%,數量比例佔41.8%;分解者以螞蟻和蚤蠅科為主,科級比例佔15.4%,數量比例佔23.6%。次級消費者,以寄生性的小蜂科和瘦蜂科和捕食性的蜘蛛為主,科級比例佔18%,數量比例佔34.3%。本研究在對探討台灣食蟲植物長葉茅膏菜只是個開端,期望將來能更進入更深一層的領域當中。

Insectivorous plants utilize various traps to capture preys and digest them as the unique adaptation to low-nutrient environments such as bogs and fens. Drosera indica L. is one of the remarkable members of the genus Drosera due to its capability of capturing the widest spectrum and highest abundance of prey types among all insectivorous plants in Taiwan. Despite the potential importance of D. indica in the nutrient cycling their local habitats and associated ecosystems, this species has been seriously threatened resulting from the habitat degradation due to the intensive urbanization , and the extensive, unmanaged application of herbicides. Therefore, this research aimed to study the diversity and abundance of prey captured by this insectivorous plant, and survey the resource of insect-prey from the local habitat of Lotus Wetland, Hsinchu County from Taiwan. Three work stages were involved in this study so that we first sampled the insects at different locations from the study site to obtain six insect samples using sweep nets. Then, all insects were identified to the family or order level and their abundance were recorded in the laboratory. This was followed by result analysis and interpretation. Our results showed that 43 orders /families were identified from the 87 insect individuals (42 insect samples unidentified). In addition, higher insect diversity and abundance recorded at northern locations, i.e. G1CD, G2H, and NL, were higher than that from the southern locations including CDR, HR, and NR. The insect community was dominated by three major orders Hymenoptera, Diptera and Orthoptera in terms of both biodiversity and abundance. Large number of spiders was captured in our survey including Araneae (45% ), Formicidae (32% ), Chalcidoidea (12% ), Acrididae (6%) and Phoridae (5%). Also, we hypothesis that the prey size of D. indica could be limited by the maximum width of the leaf plus twice of length of the glandular hairs around the leaf (i.e. 10mm). We tested this hypothesis by comparing the δ15N values of D. indica and prey of different life-stages, e.g. adult (imago) and larva (grub), and sizes using stable nitrogen isotope analysis. According to our findings, the local food web structure was composed of primary consumers dominated by the herbivores (prey deiversity at family level = 66.7%, relative abundance = 1.8%), secondary consumers mostly represented by parasitic insects such as Chalcidoidea, Evaniidae and predaceous spiders (prey deiversity = 18%, relative abundance = 34.3%). Formicidae and Phoridae were the dominant decomposers making up of 15.4% of prey diversity and 23.6% of the relative abundance.
URI: http://hdl.handle.net/11455/92613
其他識別: U0005-0202201519374400
Rights: 同意授權瀏覽/列印電子全文服務,2015-02-06起公開。
Appears in Collections:生命科學院碩士在職專班

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-5101052005-1.pdf5.32 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.