Please use this identifier to cite or link to this item:
標題: 製備以及應用重組蛋白質於多株抗體之生產
Production and application of recombinant proteins in production of polyclonal antibodies
作者: 蘇尹芃
Yin-Peng Su
關鍵字: 重組蛋白質;多株抗體;包涵體;recombinant protein;polyclonal antibody;inclusion body
引用: Bakker, H., G. J. Rouwendal, et al. (2006). 'An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes.' Proc Natl Acad Sci U S A 103(20): 7577-7582. Bokman, S. H. and W. W. Ward (1981). 'Renaturation of Aequorea gree-fluorescent protein.' Biochem Biophys Res Commun 101(4): 1372-1380. Bowden, G. A., A. M. Paredes, et al. (1991). 'Structure and morphology of protein inclusion bodies in Escherichia coli.' Biotechnology (N Y) 9(8): 725-730. Calcagni, M., M. K. Althaus, et al. (2011). 'In vivo visualization of the origination of skin graft vasculature in a wild-type/GFP crossover model.' Microvasc Res 82(3): 237-245. Cardamone, M., N. K. Puri, et al. (1995). 'Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies.' Biochemistry 34(17): 5773-5794. Chalfie, M., Y. Tu, et al. (1994). 'Green fluorescent protein as a marker for gene expression.' Science 263(5148): 802-805. Clark, E. D. B. (1998). 'Refolding of recombinant proteins.' Curr Opin Biotechnol 9(2): 157-163. Cody, C. W., D. C. Prasher, et al. (1993). 'Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein.' Biochemistry 32(5): 1212-1218. Cole, T. C., P. Ghosh, et al. (1986). 'Variations of the proteoglycans of the canine intervertebral disc with ageing.' Biochim Biophys Acta 880(2-3): 209-219. Cormack, B. P., R. H. Valdivia, et al. (1996). 'FACS-optimized mutants of the green fluorescent protein (GFP).' Gene 173(1 Spec No): 33-38. Coutard, B., E. G. Danchin, et al. (2012). 'Single pH buffer refolding screen for protein from inclusion bodies.' Protein Expr Purif 82(2): 352-359. Delhon, G., E. R. Tulman, et al. (2004). 'Genomes of the parapoxviruses ORF virus and bovine papular stomatitis virus.' J Virol 78(1): 168-177. Edwards, C. P. and A. Aruffo (1993). 'Current applications of COS cell based transient expression systems.' Curr Opin Biotechnol 4(5): 558-563. Fischer, B., I. Sumner, et al. (1993). 'Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies.' Biotechnol Bioeng 41(1): 3-13. Gerdes, H. H. and C. Kaether (1996). 'Green fluorescent protein: applications in cell biology.' FEBS Lett 389(1): 44-47. Haig, D. M., C. J. McInnes, et al. (1998). 'The orf virus OV20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double-stranded RNA-dependent kinase.' Immunology 93(3): 335-340. Heim, R., A. B. Cubitt, et al. (1995). 'Improved green fluorescence.' Nature 373(6516): 663-664. Heim, R., D. C. Prasher, et al. (1994). 'Wavelength mutations and posttranslational autoxidation of green fluorescent protein.' Proc Natl Acad Sci U S A 91(26): 12501-12504. Hitzeman, R. A., F. E. Hagie, et al. (1981). 'Expression of a human gene for interferon in yeast.' Nature 293(5835): 717-722. Hunt, I. (2005). 'From gene to protein: a review of new and enabling technologies for multi-parallel protein expression.' Protein Expr Purif 40(1): 1-22. Huynh, C. Q. and H. Zieler (1999). 'Construction of modular and versatile plasmid vectors for the high-level expression of single or multiple genes in insects and insect cell lines.' J Mol Biol 288(1): 13-20. Itakura, K., T. Hirose, et al. (1977). 'Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin.' Science 198(4321): 1056-1063. Klein, S., T. Geiger, et al. (2005). 'Expression and purification of active PKB kinase from Escherichia coli.' Protein Expr Purif 41(1): 162-169. Lazarus, A. H. (2013). 'Monoclonal versus polyclonal anti-D in the treatment of ITP.' Expert Opin Biol Ther 13(10): 1353-1356. Lee, D. H., S. G. Kim, et al. (2009). 'Folding machineries displayed on a cation-exchanger for the concerted refolding of cysteine- or proline-rich proteins.' BMC Biotechnol 9: 27. Makrides, S. C. (1996). 'Strategies for achieving high-level expression of genes in Escherichia coli.' Microbiol Rev 60(3): 512-538. McKeever, D. J., D. M. Jenkinson, et al. (1988). 'Studies of the pathogenesis of orf virus infection in sheep.' J Comp Pathol 99(3): 317-328. Misawa, S. and I. Kumagai (1999). 'Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies.' Biopolymers 51(4): 297-307. Phillips, G. N., Jr. (1997). 'Structure and dynamics of green fluorescent protein.' Curr Opin Struct Biol 7(6): 821-827. Rasmussen, S. K., L. K. Rasmussen, et al. (2007). 'Manufacture of recombinant polyclonal antibodies.' Biotechnol Lett 29(6): 845-852. Reid, B. G. and G. C. Flynn (1997). 'Chromophore formation in green fluorescent protein.' Biochemistry 36(22): 6786-6791. Ropp, J. D., C. J. Donahue, et al. (1995). 'Aequorea green fluorescent protein analysis by flow cytometry.' Cytometry 21(4): 309-317. Rudolph, R. and H. Lilie (1996). 'In vitro folding of inclusion body proteins.' FASEB J 10(1): 49-56. Shimomura, O., F. H. Johnson, et al. (1962). 'Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea.' J Cell Comp Physiol 59: 223-239. Sims, A. H., M. E. Gent, et al. (2005). 'Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo.' Appl Environ Microbiol 71(5): 2737-2747. Singh, S. M. and A. K. Panda (2005). 'Solubilization and refolding of bacterial inclusion body proteins.' J Biosci Bioeng 99(4): 303-310. Soler, E., A. Le Saux, et al. (2005). 'Production of two vaccinating recombinant rotavirus proteins in the milk of transgenic rabbits.' Transgenic Res 14(6): 833-844. Stockel, J., K. Doring, et al. (1997). 'Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules.' Eur J Biochem 248(3): 684-691. Strandberg, L. and S. O. Enfors (1991). 'Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli.' Appl Environ Microbiol 57(6): 1669-1674. Trip, H., P. J. van der Veek, et al. (2011). 'A novel screening system for secretion of heterologous proteins in Bacillus subtilis.' Microb Biotechnol 4(5): 673-682. Tsien, R. Y. (1998). 'The green fluorescent protein.' Annu Rev Biochem 67: 509-544. Tsumoto, K., D. Ejima, et al. (2003). 'Practical considerations in refolding proteins from inclusion bodies.' Protein Expr Purif 28(1): 1-8. Tsumoto, K., M. Umetsu, et al. (2003). 'Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine.' Biochem Biophys Res Commun 312(4): 1383-1386. Vera, A., N. Gonzalez-Montalban, et al. (2007). 'The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures.' Biotechnol Bioeng 96(6): 1101-1106. Walsh, G. (2003). 'Biopharmaceutical benchmarks--2003.' Nat Biotechnol 21(8): 865-870. Worrall, D. M. and N. H. Goss (1989). 'The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli.' Aust J Biotechnol 3(1): 28-32. Xiang, Y., R. C. Condit, et al. (2002). 'Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus.' J Virol 76(10): 5251-5259. Yang, T. T., L. Cheng, et al. (1996). 'Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein.' Nucleic Acids Res 24(22): 4592-4593. Zhang, G., V. Gurtu, et al. (1996). 'An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells.' Biochem Biophys Res Commun 227(3): 707-711.

Currently, E. coli is the most applicable system to produce foreign recombinant proteins. Proteins or sera acquired from animals immunized with antigenic recombinant proteins made from this prokaryotic expressing system have been broadly implemented to basic researches or clinical diagnosis and therapy. However, the defect of post-translational modification might affect protein folding; hence, whether the recombinant protein produced from E. coli represents the original conformation or maintains biological function require further investigation. In this study, E.coli expression system was exploited to produce recombinant GFP, EGFP, and orf virus E3 protein with the ability to bind dsRNA. The soluble and insoluble fractions of target proteins were purified and used as antigenic proteins for immunization of mice to peoduce polyclonal antibodies that were then characterized by western blot, ELISA and immunofluorescent analysis. The results demonstrated that the polyclonal antibodies contained the capacity of identifying antigens produced in both prokaryotic and eukaryotic systems. Furthermore, the serum produced from mice immunized with insoluble fraction of GFP recombinant protein could evidently detect GFP antigen to a similar extent to that made from soluble counterpart. In addition, both the polyclonal antibody arose from the soluble and insoluble fraction of the GFP can cross reactive with EGFP protein expressed by eukaryotic expression system.
其他識別: U0005-2201201411030300
Rights: 同意授權瀏覽/列印電子全文服務,2016-01-23起公開。
Appears in Collections:生命科學院碩士在職專班

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-5100052012-1.pdf2.01 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.