Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92626
DC FieldValueLanguage
dc.contributor黃介辰zh_TW
dc.contributorChieh-Chen Huangen_US
dc.contributor.author周美怡zh_TW
dc.contributor.authorMei-Yi Chouen_US
dc.contributor.other生命科學院碩士在職專班zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-16T03:56:06Z-
dc.identifierU0005-3107201523532600zh_TW
dc.identifier.citationAbe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15:63-78 Abe H, Yamaguchi-Shinozaki K, Urao T, lwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in droughtand abscisic acid-regulated gene expression. The Plant Cell 9:1859-1868 Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany 53(377):2039-2055 Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59:313-39 Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany 55(396):397-409 Bieniawska Z, Barratt DHP, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. The Plant Journal 49:810-828 Chen YH, Yang XY, He K, Liu MH, Li JG, Gao ZF, Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL, Gu HG, Qu LJ (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB Family. Plant Molecular Biology 60:107-124 Cheng H, Song SS, Xiao LT, Soo HM, Cheng ZW, Xie DX, Peng JR (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS ONE 5(3): e 1000440 Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95-101 Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16(6):735-743 Desveaux D, Allard J, Brisson N, Sygusch J (2002) A new family of plant transcription factors displays a novel ssDNA-binding surface. Nature Structural Biology 9:512-517 Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N (2004) A 'Whirly' transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Developmental Cell 6:229-240 Dolferus R, Wolansky M, Carroll R, Miyashita Y, Ismond K, Good A (2008) Functional analysis of lactate dehydrogenase during hypoxic stress in Arabidopsis. Functional Plant Biology 35:131-140 Dongen JTV, Licausi F (2015) Oxygen sensing and signaling. Annu. Rev. Plant Biol. 66:13.1-13.23 Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, Bodt SD, Bossche RV, Milde LD, Yoshizumi T, Matsui M, Inzé D (2013) ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiology 162:319-332 Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends in Plant Science 15(10):573-581 Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667-675 Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19(6):1349. Ferl RJ, Laughner BH (1989) In vivo detection of regulatory factor binding sites of Arabidopsis thaliana Adh. Plant Molecular Biology 12: 357-366 Ferl RJ, Nick HS (1987) In vivo detection of regulatory factor binding sites in the 5' flanking region of maize Adhl. The Journal of Biological Chemistry 262:7947-7950 Gigolashvili T, Berger B, Mock HP, Müler C, Weisshaar B, Flügge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. The Plant Journal 50:886-901 Guglielminetti L, Perata P, Alpi A (1995) Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiology 108:735-741. He CJ, Finlayson SA, Drew MC, Jordan WR, Morgan PW (1996b) Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiology 112:1679-1685 He CJ, Morgan PW, Drew MC (1996a) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma -1 formation induced by hypoxra. Plant Physiology 112:463-472 Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R (2010) Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiology. 153:757-772 Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Cell 2(1):11-15 Hoeren FU, Dolferus R, Wu Y, Peacock WJ (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149:479-490 Hsieh WP, Hsieh HL, Wu SH (2012) Arabidopsis bZIP16 transcription factor integrates light and hormone signaling pathways to regulate early seedling development. The Plant Cell 24:3997-4011 Hsu FC, Chou MY, Chou SJ, Li YR, Peng HP, Shih MC (2013) Submergence Confers Immunity Mediated by the WRKY22Transcription Factor in Arabidopsis. The Plant Cell 25:2699-2713 Hsu FC, Chou MY, Peng HP, Chou SJ, Shih MC (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS ONE 6(12):e28888. Ismond KP, Dolferus R, Pauw MD, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiology 132:1292-1302 Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17:287-291 Kelliher T, Walbot V (2012) Hypoxia triggers meiotic fate acquisition in maize. Science 337:345-348 Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481-2494. Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. The Plant Journal 16(2):263-276 Krause K, Kilbienski I, Mulisch M, Rödiger A, Schäfer A, Krupinska K (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Letters 579:3707-3712 Kürsteiner O, Dupuis I, Kuhlemeier C ( 2003) The Pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiology 132:968-978 Lai LB, Nadeau JA, Lucas J, Lee EK, Nakagawa T, Zhao L, Geisler M, Sack FD (2005) The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage. The Plant Cell 17: 2754-2767 Libault M, Wan J, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Molecular Plant-Microbe Interactions 20(8):900-911 Licausi F, Dongen JTV, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. The Plant Journal 62:302-315 Licausi F, Weits DA, Pant BD, Scheible WR, Geigenberger P, Dongen JTV (2010) Hypoxia responsive gene expression is mediated by various subsets of trans-acting factors and miRNAs that are determined by the actual oxygen availability. New Phytologist 190:442-456. Linkies A, Müller K, Morris K, Turečková V , Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum andArabidopsis thaliana. The Plant Cell 21:3803-3822 Liu F, Toai TV, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiology 137:1115-1129 Loreti E, Poggi A, Novi G, Alpi A, Perata P (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiology 137:1130-1138 Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. The Plant Journal 46:984-1008 Mandaokar A, Browse J (2008) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiology 149:851-862 Martínez-Hackert E, Stock AM (1997) Structural relationships in the OmpR family of winged-helix transcription factors. Journal of Molecular Biology 269:301-312 McKendree WL Jr. and Ferl RJ (1992) Functional elements of the Arabidopsis Adh promoter include the G-box. Plant Molecular Biology 19: 859-862 Meissner RC, Jin H, Cominelli E, Denekamp M, Fuertes A, Greco R, Kranz HD, Penfield S, Petroni K, Urzainqui A, Martin C, Paz-Ares J, Smeekens S, Tonelli C, Weisshaar B, Baumann E, Klimyuk V, Marillonnet S, Patel K, Speulman E, Tissier AF, Bouchez D, Jones JJD, Pereira A, Wisman E, Bevan M (1999) Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB Genes. The Plant Cell 11:1827-1840 Mithran M, Paparelli E, Novi G, Perata P, Loreti E (2013) Analysis of the role of the pyruvate decarboxylase gene family in Arabidopsis thaliana under low-oxygen conditions. Plant Biology 16:28-34 Müller D, Schmitz G, Theres K (2006) Blind Homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. The Plant Cell 18: 586-597 Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y (1994) Solution structure of a specific DNA complex of the Myb DNA-Binding Domain with cooperatiVe recognition helices. Cell 79:639-648 Olive MR, Peacock WJ, Dennis ES (1991) The anaerobic responsive element contains two GC‐rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adh1 promoter. Nucleic Acids Research 19(25):7053-7060 Olive MR, Walker JC, Singh K, Dennis ES, Peacock WJ (1990)Functional properties of the anaerobic responsive element of the maize adh1 gene. Plant Molecular Biology 15:593-604 Qi TC, Song SS, Ren QC, Wu DW, Huang H, Chen Y, Fan M, Peng W, Ren CM, DX Xie (2011) The Jasmonate-ZIM-Domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell 23:1795-1814 Ramsay NA, Glover BJ (2005) MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. TRENDS in Plant Science 10(2):63-70 Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal 49:592-606 Ricard B, Toai TV, Chourey P, Saglio P (1998) Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiology 116:1323-1331. Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110 Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J (1998) More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. The Plant Journal 14(3):273-284 Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription sactors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290: 998-1009 Sasidharan R, Mustroph A, Boonman A, Akman M, Ammerlaan AMH, Breit T, Schranz ME, Voesenek LACJ, Tienderen PHV (2013) Root transcript profiling of two Rorippa species reveals gene clusters associated with extreme submergence tolerance. Plant Physiology 163:1277-1292 Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. The Plant Cell 25(8):3117-3132 Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozak K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell 13:61-72 Seki M, Satou M, Sakurai T, Akiyama K, Iida K, Ishida J, Nakajima M, Enju A, Narusaka M, Fujita M, Oono Y, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2004) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. Journal of Experimental Botany 55(395):213-223 Sheen Jen (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900-1902 Shen Y, Khanna R, Carle CM, Quail PH (2007) Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiology 145:1043-1051 Shiao Tl, Ellis MH, Dolferus R, Dennis ES, Doran PM (2002) Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations. Biotechnology and Bioengineering 77(4):455-461 Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiology 115:327-334 Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6:410-417 Smeekens S (2000) Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiology Plant Mol. Biol. 51:49-81 Smith JM, RN Arteca (2000) Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiologia Plantarum 109:180-187. Song SS, Qi TC, Huang H, Ren QC, Wu DW, Chang CQ, Peng W, Liu Y, Peng JR, Xie DX (2011) The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. The Plant Cell 23:1000-1013 Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660-677 Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Plant Biology 4:447-456. Tadege M, Kuhlemeier C (1997) Aerobic fermentation during tobacco pollen development. Plant Molecular Biology 35:343-354 Urao T, Noji M, Yamaguchi-Shinozaki K, Shinozaki K (1996) A transcriptional activation domain of ATMYB2, a drought-inducible Arabidopsis Myb-related protein. The Plant Journal 10(6):1145-1148 Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. The Plant Cell 5:1529-1539 Voesenek LACJ, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytologist doi: 10.1111/nph.13209 Walker JC, Howard EA, Dennis ES, Peacock WJ (1987) DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. PNAS 84:6624-6628 Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. The Plant Cell 14:S131-S151 Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany 100:681-697 Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. TRENDS in Plant Science 7(6):263-270 Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. TRENDS in Plant Science 10(2):88-94 Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiology 35:155-89 Yang XY, Li JG, Pei M, Gu H, Chen ZL, Qu LJ (2007) Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep 26:219-228 Zeng Y, Wu Y, Avigne WT, Koch KE (1998) Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiology 116:1573-1583. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23:283-333 Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247-73 Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. The Plant Journal 40:22-34 Zourelidou M, Torres-Zabala MD, Smith C, Bevan MW (2002) Storekeeper defines a new class of plant-specific DNA-binding proteins and is a putative regulator of patatin expression. The Plant Journal 30(4):489-497zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/92626-
dc.description.abstract在自然環境中,洪水及暴雨是無可避免的自然現象,其所帶來的淹水災害往往會對植物造成缺氧逆境。植物無法自行避免或減少傷害,因此在演化過程中發展了一些機制,以提高對暫時性缺氧的容忍度。一群在缺氧逆境下會被誘導表現的基因,如ACC oxidase 1 (ACO1), sucrose synthase 1 (SUS1), SUS4, lactate/malate dehydrogenase (LDH), pyruvate decarboxylase 1 (PDC1) 及alcohol dehydrogenase 1 (ADH1),已被證實與缺氧的耐受性有關。ADH1是缺氧的標識基因,玉米(maize)與阿拉伯芥(Arabidopsis)已對ADH1所扮演的角色有詳盡的探討。對阿拉伯芥的AtADH1而言,其啟動子(promoter)區域上的順式調控因子(cis element)―MYB結合位置(MYB binding site 1, MBS-1),是AtADH1能在缺氧下被誘導表現的重要因子,但是能與此順式調控因子結合的轉錄因子(transcription factor)仍待確認。本研究顯示AtMYB24可與MBS-1結合,並調控AtADH1的表現。特別的是,AtMYB24也同時調控了其他可被缺氧逆境誘導表現的基因。經由序列辨識,發現這些可被缺氧逆境誘導表現的基因,其啟動子區域也包含多個MBS-1,並與這些基因被誘導表現有相關性。另外,這些可被缺氧逆境誘導表現的基因,應該還有其他的共同因子(cofactor)在調控,但對於這些共同因子的作用仍是一無所知。總結實驗結果,推論MYB24是植物度過缺氧逆境的重要因子。zh_TW
dc.description.abstractTo plants, hypoxia stress mostly occurs during flood and heavy rain in the nature. Plants cannot move to avoid or reduce damage, so they develop mechanisms to tolerate transient hypoxia. A core of genes would be induced under hypoxia stress, such as ACC oxidase 1 (ACO1), sucrose synthase 1 (SUS1), SUS4, lactate/malate dehydrogenase (LDH), pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1). Many studies have shown that the expressions of these genes are related to the hypoxia tolerance. ADH is a marker gene of hypoxia, and the role of ADH is most well studied in maize and Arabidopsis. It was shown that a MYB binding site 1 (MBS-1) cis element is essential for hypoxia induction of AtADH in Arabidopsis. However, the transcription factor that binds to this cis element remains to be identified. Here, the results showed that AtMYB24 binds to MBS-1 and mediates expression of AtADH1. AtMYB24 also mediated other hypoxia-induced genes. These hypoxia-induced genes also contained several MBS-1 sites in their promoter regions, and these MBS-1 sites are related to the expression of hypoxia-induced genes. Additionally, these hypoxia-induced genes were also regulated by other cofactors, but the cofactors were still unclear. The results suggest that MYB24 is a key regulator of hypoxia inducible genes, whose functions are important for plants to tolerate hypoxia stress.en_US
dc.description.tableofcontents摘要 i Abstract ii Contents iii Index of tables vi Index of figures vii Abbreviations ix 1. Introduction and Background 1 1.1 Hypoxia stress 1 1.2 Hypoxia responses and hypoxia-induced genes in plant 2 1.3 The MYB family 5 1.4 AtMYB2 regulates AtADH1 expression during hypoxia stress 8 1.5 Hypotheses and strategies 9 2. Materials and Methods 10 2.1 Plant materials, growth conditions and hypoxia treatment 10 2.2 Cloning and transgenic plant preparation 11 2.3 Genomic DNA preparation and mutant validation 12 2.4 RNA extraction and cDNA preparation 12 2.5 Gene-expression analysis 13 2.6 AtADH1 recombinant protein expression and antibody preparation 14 2.7 Protein extraction and western-blot analysis 14 2.8 Recombinant protein expression and EMSA analysis 15 2.9 Nuclear protein extraction 16 2.10 Affinity purification 17 3. Results 19 3.1 The interaction of AtMYB2 in AtADH1 expression during hypoxia stress 19 3.2 Candidates selection 19 3.3 AtADH1 expression profile in mutants of selected candidates under hypoxia 20 3.4 Effect of myb2/myb24 on AtADH1 21 3.5 Complementary experiment of Atmyb24 22 3.6 Binding ability of AtMYB24 to MBS-1 of AtADH1 23 3.7 Phenotype of myb24 under hypoxia 23 3.8 Searching for cofactors of AtMYB24 for AtADH1 expression 24 3.9 MYB24 mediate hypoxia-induced genes during hypoxia stress 25 3.10 Mutation of PDC2 promoter in myb24 26 4. Discussion 28 4.1 MYB2 could not activate ADH1 during hypoxia 28 4.2 AtMYB24, AtMYB27 and AtMYB51 29 4.3 Mediation of AtMYB24 to AtADH1 under hypoxia 31 4.4 Additional factors are involved in regulating AtADH1 31 4.5 Affinity purified results 32 4.6 MYB24 and MBS-1 of hypoxia-induced genes 35 4.7 Effect of PDC2 promoter mutation in myb24 under hypoxia 36 5. Conclusions and Future perspectives 38 Tables and figures 40 Reference 73zh_TW
dc.language.isoen_USzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subject植物缺氧逆境zh_TW
dc.subjecthypoxia stressen_US
dc.subjectAtADH1en_US
dc.subjectAtMYB24en_US
dc.title低氧逆境下阿拉伯芥MYB24對ADH1及缺氧誘導表現基因之調控zh_TW
dc.titleRegulation of AtADH1 and hypoxia-induced genes by AtMYB24 during low oxygen stressen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-08-19zh_TW
dc.date.openaccess10000-01-01-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1en_US-
item.grantfulltextrestricted-
Appears in Collections:生命科學院碩士在職專班
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-5102052001-1.pdf4.78 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.