Please use this identifier to cite or link to this item:
標題: 鬆弛素對癌細胞遷移的作用
The effect of relaxin on cancer cell migration
作者: 楊哲魁
Je-Kuei Yang
關鍵字: 鬆弛素;癌細胞;細胞遷移;relaxin;cancer cell;cell migration
引用: 1. Nair, V.B., et al., Human relaxin-2: historical perspectives and role in cancer biology. Amino Acids, 2012. 43(3): p. 1131-40. 2. Hudson, P., et al., Structure of a genomic clone encoding biologically active human relaxin. Nature, 1983. 301(5901): p. 628-31. 3. Bathgate, R.A., et al., International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev, 2006. 58(1): p. 7-31. 4. Kumagai, J., et al., INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem, 2002. 277(35): p. 31283-6. 5. Halls, M.L., et al., Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther, 2005. 313(2): p. 677-87. 6. Cernaro, V., et al., Relaxin: new pathophysiological aspects and pharmacological perspectives for an old protein. Med Res Rev, 2014. 34(1): p. 77-105. 7. Zhang, Q., et al., Relaxin activates the MAP kinase pathway in human endometrial stromal cells. J Cell Biochem, 2002. 85(3): p. 536-44. 8. Dschietzig, T., et al., Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB. Circ Res, 2003. 92(1): p. 32-40. 9. Bathgate, R.A., et al., Relaxin family peptides and their receptors. Physiol Rev, 2013. 93(1): p. 405-80. 10. Nistri, S. and D. Bani, Relaxin receptors and nitric oxide synthases: search for the missing link. Reprod Biol Endocrinol, 2003. 1: p. 5. 11. Santibanez, J.F., M. Quintanilla, and C. Bernabeu, TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond), 2011. 121(6): p. 233-51. 12. Masterson, R., et al., Relaxin down-regulates renal fibroblast function and promotes matrix remodelling in vitro. Nephrol Dial Transplant, 2004. 19(3): p. 544-52. 13. Shabanpoor, F., F. Separovic, and J.D. Wade, The human insulin superfamily of polypeptide hormones. Vitam Horm, 2009. 80: p. 1-31. 14. Eppel, W., E. Kucera, and C. Bieglmayer, Relationship of serum levels of endogenous relaxin to cervical size in the second trimester and to cervical ripening at term. Br J Obstet Gynaecol, 1999. 106(9): p. 917-23. 15. Ostgaard, H.C., G.B. Andersson, and K. Karlsson, Prevalence of back pain in pregnancy. Spine (Phila Pa 1976), 1991. 16(5): p. 549-52. 16. Bullock, J.E., G.A. Jull, and M.I. Bullock, The relationship of low back pain to postural changes during pregnancy. Aust J Physiother, 1987. 33(1): p. 10-7. 17. Kristiansson, P., K. Svardsudd, and B. von Schoultz, Back pain during pregnancy: a prospective study. Spine (Phila Pa 1976), 1996. 21(6): p. 702-9. 18. MacLennan, A.H., et al., Serum relaxin and pelvic pain of pregnancy. Lancet, 1986. 2(8501): p. 243-5. 19. Hewitson, T.D., W.Y. Ho, and C.S. Samuel, Antifibrotic properties of relaxin: in vivo mechanism of action in experimental renal tubulointerstitial fibrosis. Endocrinology, 2010. 151(10): p. 4938-48. 20. Teerlink, J.R., et al., Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet, 2013. 381(9860): p. 29-39. 21. Ambrosy, A.P. and R.M. Witteles, Not time to RELAX in acute heart failure. Lancet, 2013. 381(9880): p. 1813. 22. Jadeski, L.C., C. Chakraborty, and P.K. Lala, Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer, 2003. 106(4): p. 496-504. 23. Binder, C., et al., Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Mol Hum Reprod, 2002. 8(9): p. 789-96. 24. Binder, C., et al., Elevated concentrations of serum relaxin are associated with metastatic disease in breast cancer patients. Breast Cancer Res Treat, 2004. 87(2): p. 157-66. 25. Hombach-Klonisch, S., et al., Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. Am J Pathol, 2006. 169(2): p. 617-32. 26. Kamat, A.A., et al., The role of relaxin in endometrial cancer. Cancer Biol Ther, 2006. 5(1): p. 71-7. 27. Zheng, H. and Y. Kang, Multilayer control of the EMT master regulators. Oncogene, 2014. 33(14): p. 1755-63. 28. Tsai, J.H., et al., Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell, 2012. 22(6): p. 725-36. 29. Berx, G. and F. van Roy, Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a003129. 30. Paredes, J., et al., Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta, 2012. 1826(2): p. 297-311. 31. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90. 32. Tsuji, T., et al., Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res, 2008. 68(24): p. 10377-86. 33. Schmitz, K.J., et al., Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol, 2008. 48(1): p. 83-90. 34. Dominguez, D., et al., Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol, 2003. 23(14): p. 5078-89. 35. Hong, K.O., et al., Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells. J Exp Clin Cancer Res, 2009. 28: p. 28. 36. Ha, G.H., J.S. Park, and E.K. Breuer, TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett, 2013. 332(1): p. 63-73. 37. Zucchini-Pascal, N., L. Peyre, and R. Rahmani, Crosstalk between beta-catenin and snail in the induction of epithelial to mesenchymal transition in hepatocarcinoma: role of the ERK1/2 pathway. Int J Mol Sci, 2013. 14(10): p. 20768-92. 38. Yu, A.E., et al., Matrix metalloproteinases. Novel targets for directed cancer therapy. Drugs Aging, 1997. 11(3): p. 229-44. 39. Kleiner, D.E. and W.G. Stetler-Stevenson, Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol, 1999. 43 Suppl: p. S42-51. 40. Westermarck, J. and V.M. Kahari, Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J, 1999. 13(8): p. 781-92. 41. Sternlicht, M.D. and Z. Werb, How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001. 17: p. 463-516. 42. Vayalil, P.K. and S.K. Katiyar, Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate, 2004. 59(1): p. 33-42. 43. Davies, G., W.G. Jiang, and M.D. Mason, Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin Cancer Res, 2001. 7(10): p. 3289-97. 44. Low, H., F.L. Crane, and D.J. Morre, Putting together a plasma membrane NADH oxidase: a tale of three laboratories. Int J Biochem Cell Biol, 2012. 44(11): p. 1834-8. 45. Bruno, M., et al., Stimulation of NADH oxidase activity from rat liver plasma membranes by growth factors and hormones is decreased or absent with hepatoma plasma membranes. Biochem J, 1992. 284 ( Pt 3): p. 625-8. 46. Morre, D.J., et al., NADH oxidase activity from sera altered by capsaicin is widely distributed among cancer patients. Arch Biochem Biophys, 1997. 342(2): p. 224-30. 47. Morre, D.J., P.J. Chueh, and D.M. Morre, Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc Natl Acad Sci U S A, 1995. 92(6): p. 1831-5. 48. Wilkinson, F., et al., Isolation and identification of a protein with capsaicin-inhibited NADH oxidase activity from culture media conditioned by growth of HeLa cells. Arch Biochem Biophys, 1996. 336(2): p. 275-82. 49. Chueh, P.J., et al., Molecular cloning and characterization of a tumor-associated, growth-related, and time-keeping hydroquinone (NADH) oxidase (tNOX) of the HeLa cell surface. Biochemistry, 2002. 41(11): p. 3732-41. 50. Liu, S.C., et al., RNA interference targeting tNOX attenuates cell migration via a mechanism that involves membrane association of Rac. Biochem Biophys Res Commun, 2008. 365(4): p. 672-7. 51. Zeng, Z.M., et al., Phosphorylation of serine-504 of tNOX (ENOX2) modulates cell proliferation and migration in cancer cells. Exp Cell Res, 2012. 318(14): p. 1759-66. 52. Liu, N.C., et al., Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo. J Agric Food Chem, 2012. 60(10): p. 2758-65. 53. Su, Y.C., et al., Chemotherapeutic agents enhance cell migration and epithelial-to-mesenchymal transition through transient up-regulation of tNOX (ENOX2) protein. Biochim Biophys Acta, 2012. 1820(11): p. 1744-52. 54. Chiarugi, A., et al., The NAD metabolome--a key determinant of cancer cell biology. Nat Rev Cancer, 2012. 12(11): p. 741-52. 55. Alano, C.C. and R.A. Swanson, Players in the PARP-1 cell-death pathway: JNK1 joins the cast. Trends Biochem Sci, 2006. 31(6): p. 309-11. 56. Yeung, F., et al., Regulation of the mitogen-activated protein kinase kinase (MEK)-1 by NAD(+)-dependent deacetylases. Oncogene, 2015. 34(6): p. 798-804. 57. Gonfloni, S., et al., P53 and Sirt1: routes of metabolism and genome stability. Biochem Pharmacol, 2014. 92(1): p. 149-56. 58. Moustakas, A. and P. Heldin, TGFbeta and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta, 2014. 1840(8): p. 2621-34. 59. Teerlink, J.R., et al., Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet, 2009. 373(9673): p. 1429-39. 60. Cao, W.H., et al., Relaxin enhances in-vitro invasiveness of breast cancer cell lines by upregulation of S100A4/MMPs signaling. Eur Rev Med Pharmacol Sci, 2013. 17(5): p. 609-17. 61. Sunder, S. and E.A. Lenton, Endocrinology of the peri-implantation period. Baillieres Best Pract Res Clin Obstet Gynaecol, 2000. 14(5): p. 789-800. 62. Bani, D., et al., Relaxin counteracts asthma-like reaction induced by inhaled antigen in sensitized guinea pigs. Endocrinology, 1997. 138(5): p. 1909-15. 63. Halls, M.L., R.A. Bathgate, and R.J. Summers, Comparison of signaling pathways activated by the relaxin family peptide receptors, RXFP1 and RXFP2, using reporter genes. J Pharmacol Exp Ther, 2007. 320(1): p. 281-90. 64. Lee, H.Y., et al., The extent to which relaxin promotes proliferation and inhibits apoptosis of cervical epithelial and stromal cells is greatest during late pregnancy in rats. Endocrinology, 2005. 146(1): p. 511-8. 65. Lekgabe, E.D., et al., Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats. Hypertension, 2005. 46(2): p. 412-8. 66. Bonacchi, M., et al., Functional and histopathological improvement of the post-infarcted rat heart upon myoblast cell grafting and relaxin therapy. J Cell Mol Med, 2009. 13(9B): p. 3437-48.
鬆弛素是一種自然存在的胜肽類賀爾蒙,它以能調節重塑懷孕婦女的子宮與子宮頸結締組織而著稱,也能調節全身血流動力學。鬆弛素具有抗纖維化的作用,另外也參與癌細胞的生理反應。然而,目前對鬆弛素對癌細胞的確實影響仍不十分清楚。因此,本實驗的目的在探討鬆弛素對癌細胞的細胞遷移的影響以及其中可能的訊息傳遞途徑。實驗材料與方法是分別以10, 50 and 100 ng/ml三種鬆弛素濃度處理TSGH-8031人類膀胱癌細胞與HCT116人類大腸癌細胞,首先我們利用全時細胞培養即時分析系統(Roche xCELLigence System)測試經處理不同濃度的relaxin處理並培養一段時間後的細胞增生與遷移。我們也利用流式細胞儀來偵測Annexin V陽性的細胞,藉以分析relaxin是否會對此兩種細胞株造成細胞凋亡(apoptosis)。最後,使用西方點墨法(Western Blot)來偵測ERK2、p-ERK、E-cadherin、JNK、MMP2、tNOX與SIRT1的表現量。實驗結果顯示,經100 ng/ml鬆弛素處理後,會減緩兩種癌細胞的遷移狀況;同時,E-cadherin的表現量會增加,另一方面p-ERK(TSGH-8301)、p-JNK、MMP-2與 SIRT1的表現量會降低。此種鬆弛素所調控的E-cadherin、p-JNK與MMP-2的改變,與鬆弛素所展現之減緩細胞遷移的作用相一致。本結果顯示出鬆弛素具有控制膀胱癌與大腸癌細胞遷移的潛力,其作用是透過E-cadhen與MMP-2的調控。

Relaxin is a naturally occurring peptidic hormone that is most known to modulate connective tissue remodeling in the uterus and cervix during pregnancy and known in the systemic hemodynamic changes. This hormone can also be involved in the molecular pathways of anti-fibrosis and cancer. However, the role of relaxin in cancer cell is not fully understood. The goal of this study was to investigate the effects of relaxin on cancer cell migration and the possible cellular pathway. The human bladder cancer TSGH-8031 cells and colon cancer HCT116 cells were treated with 10, 50 and 100 ng/ml relaxin respectively. Treatment with 100 ng/ml relaxin ameliorated the cell migration in both TSGH-8301 and HCT116 cells. In addition, we found that the expression of E-cadherin increased, whereas the expression of p-ERK(TSGH-8301), p-JNK, MMP-2 and SIRT1 decreased. The relaxin-mediated regulation of E-cadherin, p-JNK and MMP-2 was consistent with its anti-migration properties. Our data demonstrate that relaxin controls the cell migration potential of human bladder and colon cancer cells through E-cadherin and MMP-2 regulation.
其他識別: U0005-1408201523313400
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-21起公開。
Appears in Collections:生命科學院碩士在職專班

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-5101052003-1.pdf1.12 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.