Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/93005
標題: | Detection of MAGE-A in Normal Canine Tissues by Reverse
Transcription-Polymerase Chain Reaction 以反轉錄-聚合酶鏈鎖反應偵測犬正常組織的MAGE-A基因表現 |
作者: | Yen-Hao Lai 賴彥豪 |
關鍵字: | MAGE-A基因;犬;正常組織;反轉錄-聚合酶鏈鎖反應;聚合酶鏈鎖反應;MAGE-A;dogs;normal tissues;PCR;RT-PCR;real-time PCR | 引用: | Apfalter, P., Reischl, U., Hammerschlag, M.R., 2005. In-house nucleic acid amplification assays in research: How much quality control is needed before one can rely upon the results? Journal of Clinical Microbiology 43, 5835-5841. Aprelikova, O., Pandolfi, S., Tackett, S., Ferreira, M., Salnikow, K., Ward, Y., Risinger, J.I., Barrett, J.C., Niederhuber, J., 2009. Melanoma Antigen-11 Inhibits the Hypoxia-Inducible Factor Prolyl Hydroxylase 2 and Activates Hypoxic Response. Cancer Research 69, 616-624. Bastien, P., Procop, G.W., Reischl, U., 2008. Quantitative real-time PCR is not more sensitive than 'conventional' PCR. Journal of Clinical Microbiology 46, 1897-1900. Battaglia, M., Pedrazzoli, P., Palermo, B., Lanza, A., Bertolini, F., Gibelli, N., Da Prada, G.A., Zambelli, A., Perotti, C., della Cuna, G.R., 1998. Epithelial tumour cell detection and the unsolved problems of nested RT-PCR: A new sensitive one step method without false positive results. Bone Marrow Transplantation 22, 693-698. Bergeron, A., Picard, V., LaRue, H., Harel, F., Hovington, H., Lacombe, L., Fradet, Y., 2009. High frequency of MAGE-A4 and MAGE-A9 expression in high-risk bladder cancer. International Journal of Cancer 125, 1365-1371. Bhan, S., Negi, S.S., Shao, C., Glazer, C.A., Chuang, A., Gaykalova, D.A., Sun, W., Sidransky, D., Ha, P.K., Califano, J.A., 2011. BORIS binding to the promoters of cancer testis antigens, MAGEA2, MAGEA3, and MAGEA4, is associated with their transcriptional activation in lung cancer. Clinical Cancer Research 17, 4267-4276. Bird, A.P., 1980. DNA Methylation and the Frequency of Cpg in Animal DNA. Nucleic Acids Research 8, 1499-1504. Bustin, S.A., 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology 25, 169-193. Caballero, O.L., Chen, Y.T., 2009. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer science 100, 2014-2021. Canales, R.D., Luo, Y.L., Willey, J.C., Austermiller, B., Barbacioru, C.C., Boysen, C., Hunkapiller, K., Jensen, R.V., Knight, C.R., Lee, K.Y., Ma, Y.Q., Maqsodi, B., Papallo, A., Peters, E.H., Poulter, K., Ruppel, P.L., Samaha, R.R., Shi, L.M., Yang, W., Zhang, L., Goodsaid, F.M., 2006. Evaluation of DNA microarray results with quantitative gene expression platforms. Nature Biotechnology 24, 1115-1122. Chang, P.Y. 2013. Expression of MAGE-A proteins in canine malignant mammary tumors. Thesis, Master of Veterinary Medicine, National Chung-Hsing University. Chen, C.Y. 2011. Detection of MAGE-A transcripts and proteins in canine malignant tumors. Thesis, Master of Veterinary Medicine, National Chung-Hsing University. Chen, Y.C., Hsu, W.L., Chiu, C.Y., Liao, J.W., Chang, C.C., Chang, S.C., 2013. Expression of MAGE--A restricted to testis and ovary or to various cancers in dogs. Veterinary immunology and immunopathology 153, 26-34. Church, D.M., Stotler, C.J., Rutter, J.L., Murrell, J.R., Trofatter, J.A., Buckler, A.J., 1994. Isolation of Genes from Complex Sources of Mammalian Genomic DNA Using Exon Amplification. Nature Genetics 6, 98-105. Cicchetti, D.V., Feinstein, A.R., 1990. High agreement but low kappa: II. Resolving the paradoxes. Journal of clinical epidemiology 43, 551-558. Clotman, F., De Backer, O., De Plaen, E., Boon, T., Picard, J., 2000. Cell- and stage-specific expression of Mage genes during mouse spermatogenesis. Mammalian Genome 11, 696-699. Corless, C.E., Guiver, M., Borrow, R., Edwards-Jones, V., Kaczmarski, E.B., Fox, A.J., 2000. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. Journal of Clinical Microbiology 38, 1747-1752. De Backer, O., Verheyden, A.M., Martin, B., Godelaine, D., De Plaen, E., Brasseur, R., Avner, P., Boon, T., 1995. Structure, chromosomal location, and expression pattern of three mouse genes homologous to the human MAGE genes. Genomics 28, 74-83. De Smet, C., Lurquin, C., Lethe, B., Martelange, V., Boon, T., 1999. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Molecular and cellular biology 19, 7327-7335. Deaton, A.M., Bird, A., 2011. CpG islands and the regulation of transcription. Genes & Development 25, 1010-1022. Deplaen, E., Arden, K., Traversari, C., Gaforio, J.J., Szikora, J.P., Desmet, C., Brasseur, F., Vanderbruggen, P., Lethe, B., Lurquin, C., Brasseur, R., Chomez, P., Debacker, O., Cavenee, W., Boon, T., 1994. Structure, Chromosomal Localization, and Expression of 12 Genes of the Mage Family. Immunogenetics 40, 360-369. DeSmet, C., DeBacker, O., Faraoni, I., Lurquin, C., Brasseur, F., Boon, T., 1996. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proceedings of the National Academy of Sciences of the United States of America 93, 7149-7153. Dilworth, D.D., McCarrey, J.R., 1992. Single-step elimination of contaminating DNA prior to reverse transcriptase PCR. PCR methods and applications 1, 279-282. Duan, Z.F., Duan, Y.F., Lamendola, D.E., Yusuf, R.Z., Naeem, R., Penson, R.T., Seiden, M.V., 2003. Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines. Clinical Cancer Research 9, 2778-2785. Feng, Y.C. 2012. Generation of a polyclonal mouse anti-canine MAGE-A antibody. Thesis, Master of Veterinary Medicine, Master of Veterinary Medicine, National Chung-Hsing University. Fink, L., Seeger, W., Ermert, L., Hanze, J., Stahl, U., Grimminger, F., Kummer, W., Bohle, R.M., 1998. Real-time quantitative RT-PCR after laser-assisted cell picking. Nature Medicine 4, 1329-1333. Fischer, C., Gudat, F., Stulz, P., Noppen, C., Schaefer, C., Zajac, P., Trutmann, M., Kocher, T., Zuber, M., Harder, F., Heberer, M., Spagnoli, G.C., 1997. High expression of MAGE-3 protein in squamous-cell lung carcinoma. International Journal of Cancer 71, 1119-1121. Fox, D., 1998. Mearsuring Absorbance of RNA Samples, In: Focus, US, p. 37. Grone, A., Weckmann, M.T., Capen, C.C., Rosol, T.J., 1996. Canine glyceraldehyde-3-phosphate dehydrogenase complementary DNA: Polymerase chain reaction amplification, cloning, partial sequence analysis, and use as loading control in ribonuclease protection assays. American Journal of Veterinary Research 57, 254-257. Guigon, C.J., Magre, S., 2006. Contribution of germ cells to the differentiation and maturation of the ovary: Insights from models of germ cell depletion. Biology of Reproduction 74, 450-458. Higuchi, R., Fockler, C., Dollinger, G., Watson, R., 1993. Kinetic Pcr Analysis - Real-Time Monitoring of DNA Amplification Reactions. Bio-Technology 11, 1026-1030. Hilali, F., Saulnier, P., Chachaty, E., Andremont, A., 1997. Decontamination of polymerase chain reaction reagents for detection of low concentrations of 16S rRNA genes. Molecular Biotechnology 7, 207-216. Hofbauer, G.F., Schaefer, C., Noppen, C., Boni, R., Kamarashev, J., Nestle, F.O., Spagnoli, G.C., Dummer, R., 1997. MAGE-3 immunoreactivity in formalin-fixed, paraffin-embedded primary and metastatic melanoma: frequency and distribution. The American journal of pathology 151, 1549-1553. Huang, Z.Q., Fasco, M.J., Kaminsky, L.S., 1996. Optimization of DNase I removal of contaminating DNA from RNA for use in quantitative RNA-PCR. Biotechniques 20, 1012-&. Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., 1990. Competitive PCR for Quantitation of mRNA In: PCR Protocols: A Guide to Methods and Applications. Academic Press Limited, London, UK, pp. 60-69. Jungbluth, A.A., Busam, K.J., Kolb, D., Iversen, K., Coplan, K., Chen, Y.T., Spagnoli, G.C., Old, L.J., 2000. Expression of MAGE-antigens in normal tissues and cancer. International Journal of Cancer 85, 460-465. Jungbluth, A.A., Silva, W.A., Jr., Iversen, K., Frosina, D., Zaidi, B., Coplan, K., Eastlake-Wade, S.K., Castelli, S.B., Spagnoli, G.C., Old, L.J., Vogel, M., 2007. Expression of cancer-testis (CT) antigens in placenta. Cancer immunity 7, 15. Ke, L.D., Chen, Z., Yung, W.K.A., 2000. A reliability test of standard-based quantitative PCR: exogenous vs endogenous standards. Molecular and Cellular Probes 14, 127-135. Kocher, T., Zheng, M., Bolli, M., Simon, R., Forster, T., Schultz-Thater, E., Remmel, E., Noppen, C., Schmid, U., Ackermann, D., Mihatsch, M.J., Gasser, T., Heberer, M., Sauter, G., Spagnoli, G.C., 2002. Prognostic relevance of MAGE-A4 tumor antigen expression in transitional cell carcinoma of the urinary bladder: A tissue microarray study. International Journal of Cancer 100, 702-705. Laduron, S., Deplus, R., Zhou, S.F., Kholmanskikh, O., Godelaine, D., De Smet, C., Hayward, S.D., Fuks, F., Boon, T., De Plaen, E., 2004. MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Research 32, 4340-4350. Landry, C., Brasseur, F., Spagnoli, G.C., Marbaix, E., Boon, T., Coulie, P., Godelaine, D., 2000. Monoclonal antibody 57B stains tumor tissues that express gene MAGE-A4. International Journal of Cancer 86, 835-841. Leri, A., Malhotra, A., Liew, C.C., Kajstura, J., Anversa, P., 2000. Telomerase activity in rat cardiac myocytes is age and gender dependent. Journal of Molecular and Cellular Cardiology 32, 385-390. Li, M., Yuan, Y.H., Han, Y., Liu, Y.X., Yan, L., Wang, Y., Gu, J., 2005. Expression profile of cancer-testis genes in 121 human colorectal cancer tissue and adjacent normal tissue. Clinical Cancer Research 11, 1809-1814. Lupberger, J., Kreuzer, K.A., Baskaynak, G., Peters, U.R., le Coutre, P., Schmidt, C.A., 2002. Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR. Molecular and Cellular Probes 16, 25-30. Martin, L.A., Smith, T.J., Obermoeller, D., Bruner, B., Kracklauer, M., Dharmaraj, S., 2001. RNA purification, In: Molecular Biology Problem Solver: A Laboratory Guide. John Wiley & Sons, Inc, New York, USA, pp. 197-224. Mecklenburg, I., Weckennann, D., Zippelius, A., Schoberth, A., Petersen, S., Prang, N.A., Riethmuller, G., Kufer, P., 2007. A multimarker real-time RT-PCR for MAGE-A gene expression allows sensitive detection and quantification of the minimal systemic tumor load in patients with localized cancer. Journal of Immunological Methods 323, 180-193. Miyashiro, I., Kuo, C., Huynh, K., Iida, A., Morton, D., Bilchik, A., Giuliano, A., Hoon, D.S.B., 2001. Molecular strategy for detecting metastatic cancers with use of multiple tumor-specific MAGE-A genes. Clinical Chemistry 47, 505-512. Monte, M., Peche, L.Y., Bublik, D.R., Gobessi, S., Pierotti, M.A., Rodolfo, M., Schneider, C., 2006. MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proceedings of the National Academy of Sciences of the United States of America 103, 11160-11165. Muller, P.Y., Janovjak, H., Miserez, A.R., Dobbie, Z., 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32, 1372-+. Nardiello, T., Jungbluth, A.A., Mei, A., DiLiberto, M., Huang, X.G., Dabrowski, A., Andrade, V.C.C., Wasserstrum, R., Ely, S., Niesvizky, R., Pearse, R., Coleman, M., Jayabalan, D.S., Bhardwaj, N., Old, L.J., Chen-Kiang, S., Cho, H.J., 2011. MAGE-A Inhibits Apoptosis in Proliferating Myeloma Cells through Repression of Bax and Maintenance of Survivin. Clinical Cancer Research 17, 4309-4319. Nelson, P.T., Zhang, P.J., Spagnoli, G.C., Tomaszewski, J.E., Pasha, T.L., Frosina, D., Caballero, O.L., Simpson, A.J., Old, L.J., Jungbluth, A.A., 2007. Cancer/testis (CT) antigens are expressed in fetal ovary. Cancer immunity 7, 1. Nolan, T., Hands, R.E., Bustin, S.A., 2006. Quantification of mRNA using real-time RT-PCR. Nature Protocols 1, 1559-1582. Peikert, T., Specks, U., Farver, C., Erzurum, S.C., Comhair, S.A.A., 2006. Melanoma antigen A4 is expressed in non-small cell lung cancers and promotes apoptosis. Cancer Research 66, 4693-4700. Pold, M., Zhou, J., Chen, G.L., Hall, J.M., Vescio, R.A., Berenson, J.R., 1999. Identification of a new, unorthodox member of the MAGE gene family. Genomics 59, 161-167. Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A., 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications 313, 856-862. Riddick, A.C.P., Barker, C., Sheriffs, I., Bass, R., Ellis, V., Sethia, K.K., Edwards, D.R., Ball, R.Y., 2003. Banking of fresh-frozen prostate tissue: methods, validation and use. Bju International 91, 315-323. Rimoldi, D., Salvi, S., Schultz-Thater, E., Spagnoli, G.C., Cerottini, J.C., 2000. Anti-MAGE-3 antibody 57B and anti-MAGE-1 antibody 6C1 can be used to study different proteins of the MAGE-A family. International Journal of Cancer 86, 749-751. Rogner, U.C., Wilke, K., Steck, E., Korn, B., Poustka, A., 1995. The Melanoma Antigen Gene (Mage) Family Is Clustered in the Chromosomal Band Xq28. Genomics 29, 725-731. Schefe, J.H., Lehmann, K.E., Buschmann, I.R., Unger, T., Funke-Kaiser, H., 2006. Quantitative real-time RT-PCR data analysis: current concepts and the novel 'gene expression's C-T difference' formula. Journal of Molecular Medicine-Jmm 84, 901-910. Schultz-Thater, E., Piscuoglio, S., Iezzi, G., Le Magnen, C., Zajac, P., Carafa, V., Terracciano, L., Tornillo, L., Spagnoli, G.C., 2011. MAGE-A10 is a nuclear protein frequently expressed in high percentages of tumor cells in lung, skin and urothelial malignancies. International Journal of Cancer 129, 1137-1148. Simpson, A.J., Caballero, O.L., Jungbluth, A., Chen, Y.T., Old, L.J., 2005. Cancer/testis antigens, gametogenesis and cancer. Nature reviews. Cancer 5, 615-625. Simpson, D., Feeney, S., Boyle, C., Stitt, A., 2000. Retinal VEGF mRNA measured by SYBR Green I fluorescence: A versatile approach to quantitative PCR. Molecular Vision 6, 178-183. Smith, I.M., Glazer, C.A., Mithani, S.K., Ochs, M.F., Sun, W., Bhan, S., Vostrov, A., Abdullaev, Z., Lobanenkov, V., Gray, A., Liu, C., Chang, S.S., Ostrow, K.L., Westra, W.H., Begum, S., Dhara, M., Califano, J., 2009. Coordinated activation of candidate proto-oncogenes and cancer testes antigens via promoter demethylation in head and neck cancer and lung cancer. PLoS One 4, e4961. Takahashi, K., Shichijo, S., Noguchi, M., Hirohata, M., Itoh, K., 1995. Identification of Mage-1 and Mage-4 Proteins in Spermatogonia and Primary Spermatocytes of Testis. Cancer Research 55, 3478-3482. van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., Boon, T., 1991. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643-1647. Vanderbruggen, P., Traversari, C., Chomez, P., Lurquin, C., Deplaen, E., Vandeneynde, B., Knuth, A., Boon, T., 1991. A Gene Encoding an Antigen Recognized by Cytolytic Lymphocytes-T on a Human-Melanoma. Science 254, 1643-1647. Vandesompele, J., De Paepe, A., Speleman, F., 2002. Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real time RT-PCR. Analytical Biochemistry 303, 95-98. Wong, M.L., Medrano, J.F., 2005. Real-time PCR for mRNA quantitation. Biotechniques 39, 75-85. Wong, P.P., Yeoh, C.C., Ahmad, A.S., Chelala, C., Gillett, C., Speirs, V., Jones, J.L., Hurst, H.C., 2014. Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene 33, 4579-4588. Yang, B., O'Herrin, S.M., Wu, J., Reagan-Shaw, S., Ma, Y., Bhat, K.M.R., Gravekamp, C., Setaluri, V., Peters, N., Hoffmann, F.M., Peng, H., Ivanov, A.V., Simpson, A.J.G., Longley, B.J., 2007. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Research 67, 9954-9962. Yoshida, N., Abe, H., Ohkuri, T., Wakita, D., Sato, M., Noguchi, D., Miyamoto, M., Morikawa, T., Kondo, S., Ikeda, H., Nishimura, T., 2006. Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens and T cell infiltration in non-small cell lung carcinoma and their prognostic significance. International Journal of Oncology 28, 1089-1098. | 摘要: | 在人類的各種惡性腫瘤中已證實有MAGE-A基因的表現,而體內的胞殺性T細胞會辨識此基因轉譯出之MAGE-A蛋白。除了成人睪丸、胎兒卵巢及胎盤,其餘正常組織皆不會表現MAGE-A基因,然而此基因在犬正常組織的表現特性仍未被研究。本實驗的目的為利用聚合酶鏈鎖反應(polymerase chain reaction)及即時定量聚合酶鏈鎖反應(quantitative real-time polymerase chain reaction)偵測犬正常組織中MAGE-A基因的表現並比較此二種偵測方法的一致性。研究樣本來自2隻幼年與3隻成年經標準程序之動物實驗核可後已施行安死術的健康犬,分別由5隻犬的不同器官分別取得39、42、40、43 及 33個,共197個正常組織,包括神經 (n=35)、消化道 (n=45)、免疫 (n=20)、呼吸 (n=9)、循環 (n=20)、內分泌腺體(n=18)、泌尿道(n=17)、生殖 (n=10)、肌肉骨骼 (n=13)與外皮 (n=10)等組織進行MAGE-A基因偵測。將組織樣本均質化後,萃取總核醣核酸(total RNA)進行反轉錄(reverse transcription),以犬MAGE-A高度保留區(conserved region)設計之引子(primer)偵測基因表現。經由聚合酶鏈鎖反應,所有犬正常組織除了睪丸,其他組織皆未偵測到MAGE-A基因的表現。以敏感度更高的即時定量聚合酶鏈鎖反應進行偵測並量化MAGE-A與GAPDH之相對表現量後,發現睪丸中MAGE-A表現量為GAPDH的0.25倍;有少數樣本(n = 10/131)呈現MAGE-A陽性,其中6個樣本僅有微量相對表現量,其餘4個樣本皆來自於消化道系統,而多數的組織仍呈現MAGE-A陰性;在所有來自雄性犬的組織中,MAGE-A陰性樣本則占98% (n = 100/102)。比較兩種偵測MAGE-A基因的方式後,兩者的觀察值有高度的一致性,且陰性反應的偵測結果也近於完全一致。因此,經由兩種方法偵測可證實在犬正常組織中除了睪丸之外,MAGE-A基因的表現是有限的。 The MAGE-A, known as a cancer/testis antigen, expresses in various malignant tumors and normal testes in humans and can be recognized by cytotoxtic T lymphocytes. Since the expression of MAGE-A is unclear in normal canine tissues, the aim of this study is to detect MAGE-A by conventional and real-time polymerase chain reaction (PCR) to determine the expression of MAGE-A in normal canine tissues. Five clinically healthy dogs obtained from Taichung City Animal Protection and Health Inspection Office were approved by Institutional Animal Care and Use Committee and analyzed in the study. A total of 197 normal canine tissues from nervous (n=35), alimentary (n=45), immune (n=20), respiratory (n=9), circulatory (n=20), endocrine (n=18), urinary (n=17), reproductive (n=10), muscle-skeletal (n=13) and integumentary (n=10) organs were collected from these five dogs (39, 42, 40, 43 and 33 specimens, respectively). All cDNA were reverse transcribed from total RNA to detect MAGE-A expression by canine MAGE-A primers targeting canine MAGE-A conserved regions. Results demonstrated that MAGE-A expression in all of specimens except for testes were undetectable by end-point PCR. Among analyzed samples by real-time PCR, 10 specimens showed MAGE-A expression in addition to testes, while other tissues were negative on MAGE-A expression. Among them, 6 samples revealed weak expression of MAGE-A. However, there were no statistically significant difference between expression levels and tissue systems. Compare with these two methods of detecting gene, there was a high agreement of observed agreement and an almost perfect agreement of negative results. In conclusion, limitation of MAGE-A expression in normal canine tissues except for testes was confirmed. |
URI: | http://hdl.handle.net/11455/93005 | 其他識別: | U0005-0608201511345500 | Rights: | 不同意授權瀏覽/列印電子全文服務 |
Appears in Collections: | 獸醫學系所 |
Files in This Item:
File | Description | Size | Format | Existing users please Login |
---|---|---|---|---|
nchu-104-7102038017-1.pdf | 1.2 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.