Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9335
標題: 摻雜氧化鋅奈米柱之合成與特性及其應用之研究
Synthesis, characterization and application of the doped ZnO nanorods
作者: 林宸澂
Lin, Chen-Cheng
關鍵字: 氧化鋅;ZnO;奈米柱;鐵磁性;Nanorods;Ferromagnetism
出版社: 電機工程學系所
引用: Chapter 1 Introduction [1] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu, and W. Huang, Appl. Phys. Lett. 88, 233106 (2006). [2] Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett. 84, 1525 (2004). [3] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 80, 4232 (2002). [4] B. Alemán, P. Fernández, and J. Piqueras, Appl. Phys. Lett. 95, 013111 (2009). [5] C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007). [6] G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee and C. H. Liu, Appl. Phys. Lett. 92, 05311 (2008). [7] W. L. Hughes, and Z. L. Wang, Appl. Phys. Lett. 86, 03106 (2005). [8] Y. Yang, J. Qi, Y. Zhang, Q. Liao, L. Tang, and Z. Qin, Appl. Phys. Lett. 92, 183117 (2008). [9] S. Iijima, Nature 354, 56 (1991). [10] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Materials Today 7, 34 (2004). [11] Z. L. Wang, X. Y. Kong, Y. Ding, P. X.Gao, W. L. Hughes, R. S.Yang, and Y. Zhang, Advanced Functional Materials, 14, 943 (2004). [12] W. S. Hu, Z. G. Liu, R. X. Wu, Y. F. Chen, W. Ji, T. Yu, and D. Feng, Appl. Phys. Lett.71, 548, (1997). [13] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V.Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005). [14] L. Q. Liu, B. Xiang, X. Z. Zhang, Y. Zhang, and D. P. Yu, Appl. Phys. Lett. 88, 0613104 (2008). [15] Z. Zhang, Y. Sun, Y. Zhao, G. Li and T. Wu, Appl. Phys. Lett. 92, 103113 (2008). [16] A. O. Ankiewicz, M. C. Carmo, N. A. Sobolev, W. Gehlhoff, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, J. Appl. Phys. 101, 024324 (2007). [17] X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). [18] H. J. Fan, A. S. Barnard, and M. Zacharias, Appl. Phys. Lett. 90, 143116 (2007). [19] M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, Science 305, 1269 (2005). [20] Z. Y. Wu, I. J. Chen, Y. F. Lin, S. P. Chiu, F. R. Chen, J. J. Kai, J. J. Lin, and W. B. Jian, New J. Phys. 10, 033017 (2008). [21] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voiget, and B. E. Gnade, J. Appl. Phys. 79 7983 (1996). [22] K. R. Kittlstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chamber, and D. R. Gamelin, Phys. Rev. Lett. 97, 037203 (2006). [23] J. W. Chiou, K. P. Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, F. Z. Chien, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 85, 3220 (2004). [24] M. Foley, C. T. That, and M. R. Phillips, Appl. Phys. Lett. 93, 243104 (2008). [25] Y. H. Tong, Y. C.Liu, C. L. Shao, and R. X. Mu, Appl. Phys. Lett. 88, 123111 (2006). [26] Y. F. Lin, W. B. Jian, C. P. Wang, Y. W. Suen, J. J. Lin, Z. Y. Wu, F. R. Chen, J. J. Kai, and J. J. Lin, Appl. Phys. Lett. 90, 223117 (2007). [27] X. Lin, X. B. He, T. Z. Yang, W. Guo, D. X. Shi, H. J. Gao, D. D. D. Ma, S. T. Lee, F. Liu, and X. C. Xie, Appl. Phys. Lett. 89, 043103 (2006). [28] Y. F. Lin, W. B. Jian, Nano Letter 8, 3146 (2008). [29] K. Kim, P. C. Debnath, D. H. Lee, S. Kim, and S. Y. Lee, Nanoscale Res. Lett. 6, 552 (2011). [30] S. Limpijumnong, L. Gordon, M. Miao, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 97, 072112 (2010). [31] J. R. Sadaf, M. Q. Israr, S. Kishwar, and O. Nur, M. Willander, Nanoscale Res. Lett. 5, 957 (2010). [32] Y. S. Choi, J. W. Kang, D. K. Hwang, and S. J. Park, IEEE Trans. Electron Devices 57, 26 (2010). [33] C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu., Optics Express 17, 7893 (2009). [34] S. Dhara, and P. K. Giri, Nanoscale Res. Lett. 6, 504 (2011). [35] J. Huang, L. Wang, R. Xu, K. Yang, W. Shi, and Y. Xia, Semicon. Sci. Technol. 24, 075025 (2009). [36] C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, J Phys. Chem. C 111, 12566 (2007). [37] J. Y. Park, S. W. Choi, and S. S. Kim, Nanoscale Res. Lett. 5, 353(2010). [38] B. Ling, J. L. Zhao, X. W. Sun, Member, IEEE, S. T. Tan, Y. Yang, and Z. L. Dong, IEEE Trans. on Elec. devices 57, 8 (2010). [39] J. B. Baxter, and E. S. Aydil, Appl. Phys. Lett. 86, 053114 (2009). [40] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001). [41] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004). [42] X. D. Bai, P. X. Gao, and Z. L. Wang, Appl. Phys. Lett. 82, 4806 (2003). [43] R. C. Wang, C. P. Liu, J. L. Huang, S.J. Chen, Y.K. Tseng, and S.C. Kung, Appl. Phys. Lett. 87, 013110 (2005). [44] William L. Hughes, and Zhong L. Wang, Appl. Phys. Lett. 82, 2886 (2003). [45] P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, Chem. Mater. 16, 5133 (2004). [46] Z. Fan, D. Dutta, C. J. Chien, H. Y. Chen, E. C. Brown, P. C. Chang, and J. G. Lu, Appl. Phys. Lett. 89, 213110 (2006). [47] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and Robert P. H. Chang, Chem. Mater. 17, 1001 (2005). [48] L. C. Tien, D. P. Norton, S. J. Pearton, Hung-Ta Wang, and F. Ren, Appl. Surf. Sci. 253, 4620(2007). [49] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu, and Y. Lu, IEEE Tran. on Nanotechnology 2, 50 (2003).] [50] X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004). [51] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, Eicke Weber, and P. D. Yang, Adv. Mater. 13, 113 (2001). [52] J. Zhang, and L. Zhang, Solid State Comm. 122, 493 (2002).] [53] G. W. Sears, Acta Met. 4 361 (1955). [54] R. A. Laudise, and A. A. Ballman, J. Phys. Chem., 64, 688 (1960). [55] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 203, 186 (1999). [56] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, Chem. Mater. 13, 4395 (2001). [57] L. Vayssieres, Adv. Mater. 15, 464 (2003). [58] L. E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R. J.Saykally, and P. Yang, Angew Chem. Int. Ed. 42, 3031 (2003). [59] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P.Yang, Nano Letters 5, 1231 (2005). [60] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 203, 186 (1999). [61] M. Izaki, and T. Omi, J. Electrochem. Soc., 143, 53 (1996). [62] W. Walukiewicz, Physica B 123, 302 (2001). [63] S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. Lett. 84, 1232 (2000). [64] S. B. Zhang, S. H. Wei, and A. Zunger, J. Appl. Phys.83,3192 (1998). [65] D. K. Mishra, P. Kumar, M. K. Sharma, J. Das, S. K. Singh, B. K. Roul, S. Varma, R. Chatterjee, V. V. Srinivasu, D. Kanjilal, Phys B: Condens. Matter. 405, 2659 (2010). [66] H. Xu, A. L. Rosa, T. Frauenheim, R. Q. Zhang, Phys Status Solidi (b), 247, 2195 (2010). [67] M. Ahmad, J. Zhu, J. Mater. Chem. 21, 599(2011). [68] S. J. Pearton, D. P. Norton, M. P. Ivill, A. F. Hebard, J. M. Zavada, W. M. Chen, I. A. Buyanova, IEEE Trans. Electron. Devices 54, 1040 (2007). [69] P. Sharma, A. Gupta, K.V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, Börje Johansson, and G. A. Gehring, Nature Materials. 2, 673 (2003) [70] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000). [71] M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, and J. M. D. Coey, Phys. Rev. Lett. 93, 177206 (2004). [72] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Mater 4. 173 (2005). [73] X. J. Liu, C. Song, F. Zeng, and F. Pan, J. Phys.: Condens. Matter 19, 296208 (2007). [74] X. C. Liu, E. W. Shi, Z. Z. Chen, B. Y. Chen, T. Zhang, L. X. Song, K. J. Zhou, M. Q. Cui, W. S. Yan, Z. Xie, B. He, and S. Q.Wei, J. Phys.: Condens. Matter 20, 025208 (2008). [75] X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A. M. Fox, and G. A. Gehring, New J. of Phys. 8, 135 (2006). Chapter 3 Comparison of ZnO nanorods for zinc acetate and zinc nitrate [1] T. H. Fang, and S. H. Kang, J. Phys. D: Appl. Phys. 41, 245303 (2008). [2] R. A. Laudise, and A. A. Ballman, J. Phys. Chem. 64, 688 (1960). [3] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, J. Mater. Chem. 14, 2575 ( 2004). [4] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson,Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003). [5] M. Guo, P. Diao, and S.Cai, J. Solid State Chem. 178, 1864 (2005). [6] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, Chem. Mater. 17, 1001 (2005). [7] Takanori Maruo, Naoyuki Ueno, Satoshi Ichikawa, Norikazu Nishiyama, Yasuyuki Egashira, Korekazu Ueyama, Materials Letters 63, 2373 (2009). [8] Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X.W. Fan, J. Chem. Phys. 123, 134701 (2005). [9] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996). [10] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001). [11] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Webber, and P. D. Yang, Adv. Mater. 13, 113 (2002). [12] J. Qiu, X. Li, F. Zhuge, X. Gan, X. Gao,W. He, S. J. Park, H. K. Kim, and Y. H. Hwang, “Nanotechnology 21 195602 (2010). [13] B. C. Cheng, Y. H. Xiao, G. S. Wu, and L. D. Zhang, Appl. Phys. Lett. 84, 416 (2004). [14] S. K. Sharma, G. J. Exarhos, Solid State Phenom. 55, 32 (1997). [15] X. Wang, Q. Li, Z. Liu, J. Zhang, Z. Liu, R. Wang, Appl. Phys. Lett. 84, 4941 (2004). [16] J. J. Wu, S. C. Liu, J. Phys. Chem. B 106, 9546 (2002). Chapter 4 Comparison of the structural, optical and magnetic properties for smaller and larger elements doped ZnO nanorods [1] T. Li, H. Fan, J. Yi, T. S. Herng, Y. Ma, X. Huang, J. Xue, and J. D., J. Mater. Chem. 20, 5756 (2010). [2] C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, and X. Zhao, J. Crystal Growth 292, 19 (2006). [3] G. R. Li, X. H. Lu, Z. L. Wang, X. L. Yu, and Y. X. Tong, Electrochimica Acta 55, 3687 (2010). [4] H. M. Cheng, H. C. Hsu, S. L. Chen, W. T. Wu, C. C. Kao, L. J. Lin, and W. F. Hsieh, J. Crystal Growth 277, 192 (2005). [5] D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xie, S.L. Shi, S.J. Xu, W.K. Chan, Appl. Phys. Lett. 85, 1601 (2004). [6] S. M. Zhou, X. H. Zhang, X. Meng, K. Zou, X. Fan, S. Wu, and S. Lee, Nanotechnology 15, 1152 (2004). [7] N. Y. Garces, L. Wang, L. Bai, N. C. Giles, and L. E. Halliburton, Appl. Phys. Lett. 81, 622 (2002). [8] S. K. Sharma and G. J. Exarhos, Solid. State. Phenom. 55, 32 (1997). [9] X. Wang, Q. Li, Z. Liu, J. Zhang, Z. Liu, and R. Wang, Appl. Phys. Lett. 84, 4941 (2004). [10] J. J. Wu and S. C. Liu, J. Phys. Chem. B 106, 9546 (2002). [11] 11D. Chakraborti, J. Narayan, and J. T. Prater, Appl. Phys. Lett. 90, 062504 (2007). [12] 12Gaurav Shukla, Appl. Phys. A 97, 115 (2009). [13] 13H. Yang, X. Xu, S. Wu, K. Wu, C. Ai, J. Miao, Y. Jiang, J. Mater. Sci. 47, 530 (2012). [14] 14C. Xu, K. Yang, L. Huang, and H. Wang, J. Chem. Phys. 130, 124711 (2009). [15] Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004). [16] R. Sánchez Zeferino, M. Barboza Flores, and U. Pal, J. Appl. Lett. 109, 014308 (2011). [17] Y. Dai, Y. Zhang, Q.K. Li, and C.W. Nan, Chem. Phys. Lett. 358, 83 (2002). [18] K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandina, J. Appl. Phys. 97, 124313 (2005). [19] J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977). [20] M. Rajalakshmi, A. K. Arora, B. S. Bendre, and M. Shailaja, J. Appl. Phys. 87, 2445 (2000). [21] J. M. D. Coey, M. Venkatesan, and C.B. Fitzgerald, Nat. Mater. 4, 173 (2005). [22] J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B.Y. Wang, T. Wu, L. Wang, H. T. Zhang, X.Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng, and J. Ding, Phys. Rev. Letters. 104, 137201 (2010). [23] J. W. Chiou, K. P. Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, F. Z. Chien, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu and S. C. Liu, Appl. Phys. Lett. 85, 3220 (2004). [24] H. P. He, F. Zhuge, Z. Z. Ye, L. P. Zhu, F. Z. Wang, B. H. Zhao, and J. Y. Huang, Appl. Phys. Lett. 99, 023503 (2006). [25] G. Wang and X. Li, Appl. Phys. Lett. 91, 231912(2007). [26] X. J. Liu, C. Song, F. Zeng, F. Pan,B. He, and W. S. Yan, J. Appl. Phys. 103, 093911 (2008). [27] F. C. Tsao, J. Y. Chen, C. H. Kuo, G. C. Chi, C. J. Pan P. J. Huang, C. J. Tun, B. J. Pong, T. H. Hsueh, C. Y. Chang, S. J. Pearton, and F. Ren, Appl. Phys. Lett. 92, 203110 (2008). [28] H. C. Zhu, J. Iqbal, H. J. Xu, and D. P. Yu, Journal of Chemical Physics 129, 124713 (2008). [29] Z. Zhang, J. B. Yi, J. Ding, L. M. Wong, H. L. Seng, S. J. Wang, J. G. Tao, G. P. Li, G. Z. Xing, T. C. Sum, C.H.A. Huan, and T. Wu, Journal of Physical Chemistry C 112, 9579 (2008). [30] X. Wang, Q. Li, Z. Liu, J. Zhang, Z. Liu, and R. Wang, Appl. Phys. Lett., 84, 4941 (2004). [31] J. J. Wu and S. C. Liu, J. Phys. Chem. B 106, 9546 (2002). [32] J. Iqbal, X. Liu, H. Zhu, C. Pan, Y. Zhang, D. Yu, and R. Yu, .J Appl. Phys. 106,083515 (2009). [33] W. Liu, W. Li, Z. Hu, Z. Tang, X. Tang, J. Appl. Phys. 110, 013901 (2011). [34] W. J. Liu, W. W. Li, Z. G. Hu, Z. Tang, and X. D. Tang, J. Appl. Phys. 110, 013901 (2011). [35] X. J. Liu, C. Song, F. Zeng, and F. Pan, J. Phys.: Condens. Matter 19, 296208 (2007). [36] X. C. Liu, E. W. Shi, Z. Z. Chen, B. Y. Chen, T. Zhang, L. X. Song, K. J. Zhou, M. Q. Cui, W. S. Yan, Z. Xie, B. He, and S. Q.Wei, J. Phys.: Condens. Matter 20, 025208 (2008). [37] X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A. M. Fox, and G. A. Gehring, New J. of Phys. 8, 135 (2006).
摘要: 
In this thesis, ZnO and doped ZnO nanorods were synthesized by hydrothermal method. The effects of the precursor, reaction time, and dopants on the growth mechanism and physical characterization of the ZnO nanorods were investigated in details.
In the first part, the nanorods were synthesized with zinc acetate and zinc nitrate solutions for comparison to reveal the difference of their growth mechanism. At the earlier stage, the nanorods grown in zinc acetate solution and zinc nitrate solution are all in hexagonal end shape, and both diameter and length are linearly growth with the reaction time. At prolonged stage, the growth rate of diameter and length become faster even the solution is reach to saturation limit. Two different coarsen phenomenon with two different morphologies were observed for the rods grown in these two different solutions to explain the latter stage fast growing phenomenon. The nanorods synthesized in zinc acetate solution are growing faster and less oxygen related defect than that synthesized in zinc nitrate solution.
In the second part, the research is focus on the doping effects of the nanorods growth using zinc acetate as precursor. Dopants with smaller ionic radius elements (Li and Cu) and larger ionic radius elements (Y, La and Sm) were adopted to grow nanorods by the zinc acetate system. Li, Cu has about the same radius as compared to Zn, but different in electron configuration and Y, La, and Sm are different in radius size, but with the same electron outermost shell configuration. The growth rates of the nanorods in length and in diameter, as well as morphology of nanorods were investigated systematically. The crystal characters of nanorods were further examined by the PL spectra, Raman shifted spectra, and SIMS. Results revealed that the grown crystal defects are consistently influenced by the dopant type and dopant concentrations. All of the nanorods, more or less, exhibit ferromagnetic behavior. The saturation magnetization increases with dopants concentration for the ZnO:A (A=Li, Y, La, and Sm), but decreases for the ZnO:Cu system. The origins of magnetic properties for all doped ZnO nanorods were discussed using Bound magnetic polaron and Carrier-mediated ferromagnetism models. For the ZnO:Cu system, antiferromagnetic coupling between Cu-Cu ions leads to the reversed trend.
Finally, the ZnO-based dye-sensitized solar cells were fabricated with controllable and reasonable results, indicating the potential application of the nanorods grown hydrothermally. The results of this study provide useful information in the growth of 1D ZnO nanorods with controllable semiconductor polarity for optical devices application and magnetism for future spintronic application
URI: http://hdl.handle.net/11455/9335
其他識別: U0005-1207201216454500
Appears in Collections:電機工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.