Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9352
標題: 架空導線即時監控系統提高送電容量之研究
Research of Increasing Transmission Capacity with Overhead Transmission Line Real-Time Monitoring System
作者: 林柏廷
Lin, Bo-Ting
關鍵字: 即時監測系統;real-time monitoring system;即時送電容量;額定送電容量;架空輸電線路;real-time transmission capacity;rated transmission capacity;Overhead transmission line
出版社: 電機工程學系所
引用: 1.鄒鷹、金紅核(2008.12)。輸電線路動態增容監測系統的構成。華東電力,第36卷,第12期,第33-35頁。 2.輸電工程作業手冊(1979.3)。台灣電力公司,第1-1-3-1~15及1-1-6-1~29頁。 3.徐世賢(2005.8)。模糊理論於架空輸電線容量評估之應用。碩士論文,南台科技大學電機工程研究所,台南市。 4.楊振安(2006.6)。新型高容量導線載流性能研究。碩士論文,崑山科技大學電機工程研究所,台南市。 5.韓芳、徐青松、侯煒、王孟龍(2008.1)。架空導線動態截流量計算方法的應用。電力建設,第29卷,第1期,第39-43頁。 6.輸電線路維護手冊(1979.4)。台灣電力公司,第1-1~12頁。 7.架線設計(2004.9)。台灣電力公司供電單位工作指導書,第10頁。 8.蕭勝任、陳建富、陳明堂(2012.12.7-8)。架空輸電線路動態載容量之研究及應用。中華民國第三十三屆電力工程研討會,台北市,台灣。 9.黃彥琛、劉木根、鄭文根、林家源、陳昭羽、吳福來(2013.6)。架空輸電線路動態載流監測系統與分析技術-161kV山上~龍崎4路的應用案例分析,台電公司供電系統輸電類技術心得發表會,台南市。 10.IEEE Std 738.(2006).IEEE Standard for Calculating the Current-Temperature of Bare Overhead Conductors. 11.JCS-374(2003.7),裸線許容電流の計算基準,日本電線工業會規格。 12.CIGRE Working group 22.12.(2002.8).Thermal behaviour of overhead conductors. 13.L.Staszewski,W.Rebizant.(2010).The Differences between IEEE and CIGRE Heat Balance Concepts for Line Ampacity Considerations, Modern Electric Power Systems 2010, Wroclaw, Poland.
摘要: 
台灣經濟成長使得電力需求持續不斷地增加,除增加發電量外,輸電線路之建設亦須跟上負載成長,由於各界對於環境保護、美觀及健康等問題日益重視,在民意高漲年代下新建架空輸電線路不易,因此只能朝向在提升既有輸電線路之送電容量著手。
資訊及網路發展迅速,國際間已發展一套經濟及迅速有效提高送電容量之方法,即在架空輸電線路上裝設即時監控系統。該系統可即時監測氣候參數,透過即時傳輸與計算可求出即時送電容量,該即時送電容量大於額定送電容量,可有效提升導線之送電容量。
由於影響即時送電容量之參數眾多,本論文分析IEEE-738及JCS-374標準送電容量計算公式,以泰勒級數展開之方法找出各參數影響送電容量之程度多寡。本論文建構一能考慮線下安全距離之計算即時送電容量模擬系統,將以該模擬系統找出即時送電容量與額定送電容量進行比對及驗證以泰勒級數展開法求得各參數變動率之準確性。
台電公司在山上~龍崎四路完成台灣首套即時監控系統之建置,本論文將以自製模擬系統與台電公司建置監控系統之計算結果進行比對,並針對「即時送電容量」及「導線與線下管制點距離」之差異進行原因分析與檢討。

Because of economic growth and incremental power demand, the construction of transmission lines needs to keep up with electricity growth except increasing power generation. In rising public opinion period, it is not easy to construct new overhead transmission line. Therefore, the best solution is to increase original transmission line''s capacity.
Following the rapid development of information and internet technology, a way to increase transmission capacity both economically and rapidly has been developed. By installing real-time monitoring system into the overhead transmission line, the power system can monitor meteorological parameters and then calculate real-time transmission capacity through real-time communicating and calculating. Therefore, the real-time transmit power capacity can be greater than rated transmission capacity.
As it takes a lot of parameters to calculate real-time transmission capacity, in this paper, we analyze the formula of calculating real-time transmission capacity with both the IEEE-738 and the JCS-374 standards. Taylor series method is employed to find each parameter''s influence in real-time transmission capacity. This paper proposes a real-time monitoring simulating system to yield a safe distance under the conductor. The simulating system also calculates the real-time transmission capacity to be compared with the rated transmission capacity.
Taiwan power company has installed the first real-time monitoring system on Shanshang - Longqi line. Comparison of the calculated result of the real-time monitoring simulating system with the real-time monitoring system is conducted. The difference between the simulated results and real-time monitoring system is then analyzed.
URI: http://hdl.handle.net/11455/9352
其他識別: U0005-2208201309140400
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.