Please use this identifier to cite or link to this item:
標題: Investigation of the dynamic interactions of baculovirus IE2 with the host proteins for gene transactivation
作者: 董嬛
Hsuan Tung
關鍵字: 桿狀病毒;轉錄;熱休克蛋白;肌動蛋白;baculovirus;transcription;heat shock proteins;actin
引用: Part 1: 1. Summers MD. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Advances in virus research. 2006;68:3-73. doi: 10.1016/S0065-3527(06)68001-9. PubMed PMID: 16997008. 2. van Oers MM. Opportunities and challenges for the baculovirus expression system. Journal of invertebrate pathology. 2011;107 Suppl:S3-15. doi: 10.1016/j.jip.2011.05.001. PubMed PMID: 21784228. 3. Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(22):10099-103. PubMed PMID: 7479733; PubMed Central PMCID: PMC40743. 4. Liu CY, Wang CH, Hsiao WK, Lo HR, Wu CP, Chao YC. RING and coiled-coil domains of baculovirus IE2 are critical in strong activation of the cytomegalovirus major immediate-early promoter in mammalian cells. Journal of virology. 2009;83(8):3604-16. doi: 10.1128/JVI.01778-08. PubMed PMID: 19193807; PubMed Central PMCID: PMC2663269. 5. Boyce FM, Bucher NL. Baculovirus-mediated gene transfer into mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(6):2348-52. PubMed PMID: 8637876; PubMed Central PMCID: PMC39799. 6. Barford D, Takagi Y, Schultz P, Berger I. Baculovirus expression: tackling the complexity challenge. Current opinion in structural biology. 2013;23(3):357-64. doi: 10.1016/ PubMed PMID: 23628287. 7. Lin CY, Lu CH, Luo WY, Chang YH, Sung LY, Chiu HY, et al. Baculovirus as a gene delivery vector for cartilage and bone tissue engineering. Current gene therapy. 2010;10(3):242-54. PubMed PMID: 20426760. 8. Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, et al. Baculovirus: an insect-derived vector for diverse gene transfer applications. Molecular therapy : the journal of the American Society of Gene Therapy. 2013;21(4):739-49. doi: 10.1038/mt.2012.286. PubMed PMID: 23439502; PubMed Central PMCID: PMC3616530. 9. Kost TA, Condreay JP, Jarvis DL. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature biotechnology. 2005;23(5):567-75. doi: 10.1038/nbt1095. PubMed PMID: 15877075; PubMed Central PMCID: PMC3610534. 10. Cox MM, Hashimoto Y. A fast track influenza virus vaccine produced in insect cells. Journal of invertebrate pathology. 2011;107 Suppl:S31-41. doi: 10.1016/j.jip.2011.05.003. PubMed PMID: 21784229. 11. Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert review of vaccines. 2011;10(7):1063-81. doi: 10.1586/erv.11.24. PubMed PMID: 21806400. 12. Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology. 1994;202(2):586-605. doi: 10.1006/viro.1994.1380. PubMed PMID: 8030224. 13. Rohrmann GF. Baculovirus Molecular Biology: Third Edition. Bethesda (MD)2013. 14. Imai N, Matsumoto S, Kang W. Formation of Bombyx mori nucleopolyhedrovirus IE2 nuclear foci is regulated by the functional domains for oligomerization and ubiquitin ligase activity. The Journal of general virology. 2005;86(Pt 3):637-44. doi: 10.1099/vir.0.80523-0. PubMed PMID: 15722524. 15. Carson DD, Guarino LA, Summers MD. Functional mapping of an AcNPV immediately early gene which augments expression of the IE-1 trans-activated 39K gene. Virology. 1988;162(2):444-51. PubMed PMID: 3277328. 16. Passarelli AL, Miller LK. Three baculovirus genes involved in late and very late gene expression: ie-1, ie-n, and lef-2. Journal of virology. 1993;67(4):2149-58. PubMed PMID: 8445724; PubMed Central PMCID: PMC240320. 17. Yoo S, Guarino LA. Functional dissection of the ie2 gene product of the baculovirus Autographa californica nuclear polyhedrosis virus. Virology. 1994;202(1):164-72. Epub 1994/07/01. doi: 10.1006/viro.1994.1332. PubMed PMID: 8009830. 18. Imai N, Kang W, Iwabuchi K, Sato K, Maeda S. Analysis of interaction between molecules of Bombyx mori nucleopolyhedrovirus IE-2 using a yeast two-hybrid system. Acta virologica. 2000;44(3):199-202. PubMed PMID: 11155366. 19. Kool M, Ahrens CH, Goldbach RW, Rohrmann GF, Vlak JM. Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(23):11212-6. PubMed PMID: 7972036; PubMed Central PMCID: PMC45197. 20. Mainz D, Quadt I, Knebel-Morsdorf D. Nuclear IE2 structures are related to viral DNA replication sites during baculovirus infection. Journal of virology. 2002;76(10):5198-207. PubMed PMID: 11967334; PubMed Central PMCID: PMC136171. 21. Shippam-Brett CE, Willis LG, Theilmann DA. Analysis of sequences involved in IE2 transactivation of a baculovirus immediate-early gene promoter and identification of a new regulatory motif. Virus research. 2001;75(1):13-28. PubMed PMID: 11311424. 22. Liu CY, Chen HZ, Chao YC. Maximizing baculovirus-mediated foreign proteins expression in mammalian cells. Current gene therapy. 2010;10(3):232-41. PubMed PMID: 20394573. 23. Lyupina YV, Dmitrieva SB, Timokhova AV, Beljelarskaya SN, Zatsepina OG, Evgen''ev MB, et al. An important role of the heat shock response in infected cells for replication of baculoviruses. Virology. 2010;406(2):336-41. doi: 10.1016/j.virol.2010.07.039. PubMed PMID: 20708767. 24. Nobiron I, O''Reilly DR, Olszewski JA. Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda cells: a global analysis of host gene regulation during infection, using a differential display approach. The Journal of general virology. 2003;84(Pt 11):3029-39. PubMed PMID: 14573808. 25. Salem TZ, Zhang F, Xie Y, Thiem SM. Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus-infected Spodoptera frugiperda cells. Virology. 2011;412(1):167-78. doi: 10.1016/j.virol.2011.01.006. PubMed PMID: 21276998; PubMed Central PMCID: PMC3056905. 26. Breitenbach JE, Popham HJ. Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro. Archives of virology. 2013;158(7):1517-22. doi: 10.1007/s00705-013-1640-8. PubMed PMID: 23443933. 27. Monteiro F, Carinhas N, Carrondo MJ, Bernal V, Alves PM. Toward system-level understanding of baculovirus-host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Frontiers in microbiology. 2012;3:391. doi: 10.3389/fmicb.2012.00391. PubMed PMID: 23162544; PubMed Central PMCID: PMC3494084. 28. O''Reilly DR, Miller L, Luckow VA. Baculovirus expression vectors : a laboratory manual. New York: Oxford University Press; 1994. xiii, 347 p. p. 29. Lo HR, Chao YC. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnology progress. 2004;20(1):354-60. doi: 10.1021/bp034132i. PubMed PMID: 14763863. 30. Wu YL, Wu CP, Liu CY, Lee ST, Lee HP, Chao YC. Heliothis zea nudivirus 1 gene hhi1 induces apoptosis which is blocked by the Hz-iap2 gene and a noncoding gene, pag1. Journal of virology. 2011;85(14):6856-66. doi: 10.1128/JVI.01843-10. PubMed PMID: 21543471; PubMed Central PMCID: PMC3126586. 31. Xu YZ, Thuraisingam T, Morais DA, Rola-Pleszczynski M, Radzioch D. Nuclear translocation of beta-actin is involved in transcriptional regulation during macrophage differentiation of HL-60 cells. Molecular biology of the cell. 2010;21(5):811-20. doi: 10.1091/mbc.E09-06-0534. PubMed PMID: 20053683; PubMed Central PMCID: PMC2828967. 32. Wu CP, Wang JY, Huang TY, Lo HR, Chao YC. Identification of baculoviral factors required for the activation of enhancer-like polyhedrin upstream (pu) sequence. Virus research. 2008;138(1-2):7-16. doi: 10.1016/j.virusres.2008.07.026. PubMed PMID: 18760315. 33. Wu YL, Liu CY, Wu CP, Wang CH, Lee ST, Chao YC. Cooperation of ie1 and p35 genes in the activation of baculovirus AcMNPV and HzNV-1 promoters. Virus research. 2008;135(2):247-54. doi: 10.1016/j.virusres.2008.04.001. PubMed PMID: 18486255. 34. Makhnevych T, Houry WA. The role of Hsp90 in protein complex assembly. Biochimica et biophysica acta. 2012;1823(3):674-82. doi: 10.1016/j.bbamcr.2011.09.001. PubMed PMID: 21945180. 35. Dai C, Dai S, Cao J. Proteotoxic stress of cancer: implication of the heat-shock response in oncogenesis. Journal of cellular physiology. 2012;227(8):2982-7. doi: 10.1002/jcp.24017. PubMed PMID: 22105155; PubMed Central PMCID: PMC3431153. 36. Teng Y, Ngoka L, Mei Y, Lesoon L, Cowell JK. HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. The Journal of biological chemistry. 2012;287(13):10051-9. doi: 10.1074/jbc.M111.335000. PubMed PMID: 22315230; PubMed Central PMCID: PMC3323057. 37. Manwell LA, Heikkila JJ. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells. Comparative biochemistry and physiology Part A, Molecular & integrative physiology. 2007;148(3):521-30. doi: 10.1016/j.cbpa.2007.06.422. PubMed PMID: 17681842. 38. Sahin E, Sahin M, Sanlioglu AD, Gumuslu S. KNK437, a benzylidene lactam compound, sensitises prostate cancer cells to the apoptotic effect of hyperthermia. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 2011;27(1):63-73. doi: 10.3109/02656736.2010.528139. PubMed PMID: 21204621. 39. Yokota S, Kitahara M, Nagata K. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer research. 2000;60(11):2942-8. PubMed PMID: 10850441. 40. Svensson RU, Barnes JM, Rokhlin OW, Cohen MB, Henry MD. Chemotherapeutic agents up-regulate the cytomegalovirus promoter: implications for bioluminescence imaging of tumor response to therapy. Cancer research. 2007;67(21):10445-54. doi: 10.1158/0008-5472.CAN-07-1955. PubMed PMID: 17974988. 41. Elia G, Polla B, Rossi A, Santoro MG. Induction of ferritin and heat shock proteins by prostaglandin A1 in human monocytes. Evidence for transcriptional and post-transcriptional regulation. European journal of biochemistry / FEBS. 1999;264(3):736-45. PubMed PMID: 10491119. 42. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nature reviews Molecular cell biology. 2013;14(10):630-42. doi: 10.1038/nrm3658. PubMed PMID: 24026055; PubMed Central PMCID: PMC4340576. 43. Goldberg AL. Development of proteasome inhibitors as research tools and cancer drugs. The Journal of cell biology. 2012;199(4):583-8. doi: 10.1083/jcb.201210077. PubMed PMID: 23148232; PubMed Central PMCID: PMC3494858. 44. Katsuma S, Tsuchida A, Matsuda-Imai N, Kang W, Shimada T. Role of the ubiquitin-proteasome system in Bombyx mori nucleopolyhedrovirus infection. The Journal of general virology. 2011;92(Pt 3):699-705. doi: 10.1099/vir.0.027573-0. PubMed PMID: 21084493. 45. Lyupina YV, Zatsepina OG, Timokhova AV, Orlova OV, Kostyuchenko MV, Beljelarskaya SN, et al. New insights into the induction of the heat shock proteins in baculovirus infected insect cells. Virology. 2011;421(1):34-41. doi: 10.1016/j.virol.2011.09.010. PubMed PMID: 21982219. 46. Yoo S, Guarino LA. The Autographa californica nuclear polyhedrosis virus ie2 gene encodes a transcriptional regulator. Virology. 1994;202(2):746-53. doi: 10.1006/viro.1994.1396. PubMed PMID: 8030237. 47. Schultz KL, Wetter JA, Fiore DC, Friesen PD. Transactivator IE1 is required for baculovirus early replication events that trigger apoptosis in permissive and nonpermissive cells. Journal of virology. 2009;83(1):262-72. doi: 10.1128/JVI.01827-08. PubMed PMID: 18945761; PubMed Central PMCID: PMC2612339. 48. Rodems SM, Friesen PD. Transcriptional enhancer activity of hr5 requires dual-palindrome half sites that mediate binding of a dimeric form of the baculovirus transregulator IE1. Journal of virology. 1995;69(9):5368-75. PubMed PMID: 7636981; PubMed Central PMCID: PMC189379. 49. Stewart TM, Huijskens I, Willis LG, Theilmann DA. The Autographa californica multiple nucleopolyhedrovirus ie0-ie1 gene complex is essential for wild-type virus replication, but either IE0 or IE1 can support virus growth. Journal of virology. 2005;79(8):4619-29. doi: 10.1128/JVI.79.8.4619-4629.2005. PubMed PMID: 15795248; PubMed Central PMCID: PMC1069578. 50. Sagisaka A, Fujita K, Nakamura Y, Ishibashi J, Noda H, Imanishi S, et al. Genome-wide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus. Virus research. 2010;147(2):166-75. doi: 10.1016/j.virusres.2009.10.015. PubMed PMID: 19883703. 51. Wegele H, Muller L, Buchner J. Hsp70 and Hsp90--a relay team for protein folding. Reviews of physiology, biochemistry and pharmacology. 2004;151:1-44. doi: 10.1007/s10254-003-0021-1. PubMed PMID: 14740253. 52. Bukau B, Deuerling E, Pfund C, Craig EA. Getting newly synthesized proteins into shape. Cell. 2000;101(2):119-22. doi: 10.1016/S0092-8674(00)80806-5. PubMed PMID: 10786831. 53. Kim TS, Jang CY, Kim HD, Lee JY, Ahn BY, Kim J. Interaction of Hsp90 with ribosomal proteins protects from ubiquitination and proteasome-dependent degradation. Molecular biology of the cell. 2006;17(2):824-33. doi: 10.1091/mbc.E05-08-0713. PubMed PMID: 16314389; PubMed Central PMCID: PMC1356592. 54. Xiao A, Wong J, Luo H. Viral interaction with molecular chaperones: role in regulating viral infection. Archives of virology. 2010;155(7):1021-31. doi: 10.1007/s00705-010-0691-3. PubMed PMID: 20461534. 55. Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Reviews of physiology, biochemistry and pharmacology. 2005;153:1-46. doi: 10.1007/s10254-004-0025-5. PubMed PMID: 15243813. 56. Li G, Zhang J, Tong X, Liu W, Ye X. Heat shock protein 70 inhibits the activity of Influenza A virus ribonucleoprotein and blocks the replication of virus in vitro and in vivo. PloS one. 2011;6(2):e16546. doi: 10.1371/journal.pone.0016546. PubMed PMID: 21390211; PubMed Central PMCID: PMC3044721. 57. Bastian TW, Livingston CM, Weller SK, Rice SA. Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. Journal of virology. 2010;84(5):2384-94. doi: 10.1128/JVI.01686-09. PubMed PMID: 20032172; PubMed Central PMCID: PMC2820935. 58. Livingston CM, Ifrim MF, Cowan AE, Weller SK. Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS pathogens. 2009;5(10):e1000619. doi: 10.1371/journal.ppat.1000619. PubMed PMID: 19816571; PubMed Central PMCID: PMC2752995. 59. Burch AD, Weller SK. Nuclear sequestration of cellular chaperone and proteasomal machinery during herpes simplex virus type 1 infection. Journal of virology. 2004;78(13):7175-85. doi: 10.1128/JVI.78.13.7175-7185.2004. PubMed PMID: 15194794; PubMed Central PMCID: PMC421678. 60. Li L, Johnson LA, Dai-Ju JQ, Sandri-Goldin RM. Hsc70 Focus Formation at the Periphery of HSV-1 Transcription Sites Requires ICP27. PloS one. 2008;3(1). doi: ARTN e1491 DOI 10.1371/journal.pone.0001491. PubMed PMID: WOS:000260504200004. 61. Zhang L, Hu JJ, Gong F. MG132 inhibition of proteasome blocks apoptosis induced by severe DNA damage. Cell cycle. 2011;10(20):3515-8. doi: 10.4161/cc.10.20.17789. PubMed PMID: 22031102; PubMed Central PMCID: PMCPMC3266179. 62. Wang X, Li Y, Xu X, Wang YH. Toward a system-level understanding of microRNA pathway via mathematical modeling. Bio Systems. 2010;100(1):31-8. doi: 10.1016/j.biosystems.2009.12.005. PubMed PMID: 20005918. 63. Crouch EA, Passarelli AL. Effects of baculovirus transactivators IE-1 and IE-2 on the Drosophila heat shock 70 promoter in two insect cell lines. Archives of virology. 2005;150(8):1563-78. doi: 10.1007/s00705-005-0527-8. PubMed PMID: 15868097. Part 2: 1. Zhao R, Bodnar MS, Spector DL. Nuclear neighborhoods and gene expression. Curr Opin Genet Dev. 2009;19(2):172-9. doi: 10.1016/j.gde.2009.02.007. PubMed PMID: 19339170; PubMed Central PMCID: PMCPMC2677118. 2. Mao YS, Zhang B, Spector DL. Biogenesis and function of nuclear bodies. Trends Genet. 2011;27(8):295-306. doi: 10.1016/j.tig.2011.05.006. PubMed PMID: 21680045; PubMed Central PMCID: PMCPMC3144265. 3. Taylor TJ, McNamee EE, Day C, Knipe DM. Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology. 2003;309(2):232-47. PubMed PMID: 12758171. 4. Yoo S, Guarino LA. The Autographa californica nuclear polyhedrosis virus ie2 gene encodes a transcriptional regulator. Virology. 1994;202(2):746-53. doi: 10.1006/viro.1994.1396. PubMed PMID: 8030237. 5. Liu CY, Wang CH, Hsiao WK, Lo HR, Wu CP, Chao YC. RING and coiled-coil domains of baculovirus IE2 are critical in strong activation of the cytomegalovirus major immediate-early promoter in mammalian cells. Journal of virology. 2009;83(8):3604-16. doi: 10.1128/JVI.01778-08. PubMed PMID: 19193807; PubMed Central PMCID: PMCPMC2663269. 6. Hofmann WA. Cell and molecular biology of nuclear actin. Int Rev Cell Mol Biol. 2009;273:219-63. doi: 10.1016/S1937-6448(08)01806-6. PubMed PMID: 19215906. 7. Visa N, Percipalle P. Nuclear functions of actin. Cold Spring Harb Perspect Biol. 2010;2(4):a000620. doi: 10.1101/cshperspect.a000620. PubMed PMID: 20452941; PubMed Central PMCID: PMCPMC2845203. 8. Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E, Philimonenko V, et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol. 2004;6(11):1094-101. doi: 10.1038/ncb1182. PubMed PMID: 15502823. 9. Ye J, Zhao J, Hoffmann-Rohrer U, Grummt I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 2008;22(3):322-30. doi: 10.1101/gad.455908. PubMed PMID: 18230700; PubMed Central PMCID: PMCPMC2216692. 10. Qi T, Tang W, Wang L, Zhai L, Guo L, Zeng X. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). The Journal of biological chemistry. 2011;286(17):15171-81. doi: 10.1074/jbc.M110.184374. PubMed PMID: 21378166; PubMed Central PMCID: PMCPMC3083233. 11. Kukalev A, Nord Y, Palmberg C, Bergman T, Percipalle P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol. 2005;12(3):238-44. doi: 10.1038/nsmb904. PubMed PMID: 15711563. 12. Sjolinder M, Bjork P, Soderberg E, Sabri N, Farrants AK, Visa N. The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev. 2005;19(16):1871-84. doi: 10.1101/gad.339405. PubMed PMID: 16103215; PubMed Central PMCID: PMCPMC1186187. 13. Sutherland H, Bickmore WA. Transcription factories: gene expression in unions? Nat Rev Genet. 2009;10(7):457-66. doi: 10.1038/nrg2592. PubMed PMID: 19506577. 14. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004;36(10):1065-71. doi: 10.1038/ng1423. PubMed PMID: 15361872. 15. Jackson DA, Iborra FJ, Manders EM, Cook PR. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Molecular biology of the cell. 1998;9(6):1523-36. PubMed PMID: 9614191; PubMed Central PMCID: PMCPMC25378. 16. Papantonis A, Cook PR. Fixing the model for transcription: the DNA moves, not the polymerase. Transcription. 2011;2(1):41-4. doi: 10.4161/trns.2.1.14275. PubMed PMID: 21326910; PubMed Central PMCID: PMCPMC3023647. 17. Chakalova L, Fraser P. Organization of transcription. Cold Spring Harb Perspect Biol. 2010;2(9):a000729. doi: 10.1101/cshperspect.a000729. PubMed PMID: 20668006; PubMed Central PMCID: PMCPMC2926752. 18. Kimura H, Tao Y, Roeder RG, Cook PR. Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Molecular and cellular biology. 1999;19(8):5383-92. PubMed PMID: 10409729; PubMed Central PMCID: PMCPMC84381. 19. Hongo E, Ishihara Y, Sugaya K, Sugaya K. Characterization of cells expressing RNA polymerase II tagged with green fluorescent protein: effect of ionizing irradiation on RNA synthesis. Int J Radiat Biol. 2008;84(9):778-87. doi: 10.1080/09553000802345936. PubMed PMID: 18821392. 20. O’Reilly DR, L. K. Miller, and Luckow, V. A. Baculovirus expression vectors: a laboratory manual. New York, NY: Oxford University Press; 1994. 21. Wang IF, Chang HY, Shen CK. Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition. Exp Cell Res. 2006;312(19):3796-807. doi: 10.1016/j.yexcr.2006.07.028. PubMed PMID: 17022973. 22. Chang L, Godinez WJ, Kim I-H, Tektonidis M, De Lanerolle P, Eils R, et al. PNAS Plus: Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late mRNA. Proceedings of the National Academy of Sciences. 2011;108(21):E136-E44. doi: 10.1073/pnas.1103411108. 23. Chang L, Godinez WJ, Kim IH, Tektonidis M, de Lanerolle P, Eils R, et al. Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late mRNA. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(21):E136-44. doi: 10.1073/pnas.1103411108. PubMed PMID: 21555562; PubMed Central PMCID: PMCPMC3102408. 24. Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK. Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell. 2009;17(5):639-47. doi: 10.1016/j.devcel.2009.10.017. PubMed PMID: 19922869; PubMed Central PMCID: PMCPMC3101021. 25. McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. The Journal of cell biology. 2006;172(4):541-52. doi: 10.1083/jcb.200507101. PubMed PMID: 16476775; PubMed Central PMCID: PMCPMC2063674. 26. Posern G, Miralles F, Guettler S, Treisman R. Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J. 2004;23(20):3973-83. doi: 10.1038/sj.emboj.7600404. PubMed PMID: 15385960; PubMed Central PMCID: PMCPMC524340. 27. Posern G, Sotiropoulos A, Treisman R. Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Molecular biology of the cell. 2002;13(12):4167-78. doi: 10.1091/mbc.02-05-0068. PubMed PMID: 12475943; PubMed Central PMCID: PMCPMC138624. 28. Tung H, Wei SC, Lo HR, Chao YC. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning. PloS one. 2016;11(2):e0148578. doi: 10.1371/journal.pone.0148578. PubMed PMID: 26863132; PubMed Central PMCID: PMCPMC4749218. 29. Iida K, Iida H, Yahara I. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp Cell Res. 1986;165(1):207-15. PubMed PMID: 3519257. 30. Huet G, Skarp KP, Vartiainen MK. Nuclear actin levels as an important transcriptional switch. Transcription. 2012;3(5):226-30. doi: 10.4161/trns.21062. PubMed PMID: 22771994; PubMed Central PMCID: PMCPMC3632617. 31. Visegrady B, Lorinczy D, Hild G, Somogyi B, Nyitrai M. A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide. FEBS letters. 2005;579(1):6-10. doi: 10.1016/j.febslet.2004.11.023. PubMed PMID: 15620683. 32. Kokai E, Beck H, Weissbach J, Arnold F, Sinske D, Sebert U, et al. Analysis of nuclear actin by overexpression of wild-type and actin mutant proteins. Histochem Cell Biol. 2014;141(2):123-35. doi: 10.1007/s00418-013-1151-4. PubMed PMID: 24091797. 33. Kalendova A, Kalasova I, Yamazaki S, Ulicna L, Harata M, Hozak P. Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block. Histochem Cell Biol. 2014;142(2):139-52. doi: 10.1007/s00418-014-1243-9. PubMed PMID: 25002125; PubMed Central PMCID: PMCPMC4110419. 34. Khadijeh Falahzadeh AB-E, and Maryam Shahhoseini,. The Potential Roles of Actin in The Nucleus. Cell Journal (Yakhteh). 2015;17(1):7-14. 35. Kimura H, Sugaya K, Cook PR. The transcription cycle of RNA polymerase II in living cells. The Journal of cell biology. 2002;159(5):777-82. doi: 10.1083/jcb.200206019. PubMed PMID: 12473686; PubMed Central PMCID: PMCPMC2173384. 36. Becker M, Baumann C, John S, Walker DA, Vigneron M, McNally JG, et al. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep. 2002;3(12):1188-94. doi: 10.1093/embo-reports/kvf244. PubMed PMID: 12446572; PubMed Central PMCID: PMCPMC1308318.
Baculovirus expression system has been known for high-level of eukaryotic protein production for both biomedical and industrial application. We have previously found that IE2, an early gene product of the baculovirus, formed unique nuclear bodies as transcriptional centers for the strong trans-activation of various promoters in mammalian cells, which made IE2 an important activator for many potential valuable applications. Through purification of this novel structure and mass spectrometry analysis, we further identified heat shock proteins (HSPs) to be one of the major IE2-associated proteins. We demonstrated a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which associated with IE2 stabilization through protecting it from proteasome degradation. This led to the protection of IE2’s strong gene activation function in mammalian cells and affected virus amplification in insect cells during viral infection.
Furthermore, taking advantage of the unique feature of IE2 nuclear body, we stepped forward to investigate the development and dynamic of this novel transcription activation center. By using fluorescent protein-tagged IE2 and its components, time-lapse confocal microscopy and fluorescence recovery after photobleaching (FRAP) technique, we discovered that the assembly of IE2 nuclear body was in an orderly fashion, in which nuclear actin and RNA polymerase II were recruited after the establishment of IE2 nuclear body scaffold. The enlargement of IE2 nuclear body required the dynamic of actin. Both nuclear actin and RNA polymerase II could continuously fill in IE2 nuclear body after its formation, which created a center for tight association between IE2 and the host transcriptional machinery for strong activation of viral genes. Different from our knowledge that transcription is a minute structure only visible in fixed samples under electron microscopy and barely visible under light microscopy, our results provided a novel system to visible under light microscopy for transcription center formation and dynamic.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生物科技學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.