Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9511
DC FieldValueLanguage
dc.contributor.advisor顏秀崗zh_TW
dc.contributor.advisorS.K.Yenen_US
dc.contributor.author黃盈慈zh_TW
dc.contributor.authorHuang, Y.cen_US
dc.date2005zh_TW
dc.date.accessioned2014-06-06T06:43:23Z-
dc.date.available2014-06-06T06:43:23Z-
dc.identifier.urihttp://hdl.handle.net/11455/9511-
dc.description.abstract摘 要 本研究的目是在Ni(NO3)2水溶液中利用電化學方法,以定電壓方式陰極沉積及燒結NiO/LiNiO2/Ni2O3薄膜於不銹鋼基材上,並利用XRD、TGA/DTA、SEM/EDS、AFM 、TEM、 Raman Spectroscopy及充放電測試,分析薄膜的特性和電化學性質。 由陰極極化曲線實驗推論Ni(NO3)2水溶液中陰極反應分為三個階段: 1. O2 + 4H+ + 4e- → 2H2O (0.5 V ~ 0. 28V vs. Ag/AgCl ) 2. O2 + 2H2O+2e- → 4 OH- (0.28 V ~ -0.43 V vs. Ag/AgCl ) 3. 2H2O + 2e- → H2 + 2OH- (-0.43 V ~ -2.5 V vs. Ag/AgCl ) 於第三階段電解沉積Ni(OH)2/LiOH薄膜,經過300℃ 1小時燒結後可得NiO及少量的LiNiO2/Ni2O3,晶粒尺寸約6nm,在不同電解質LiPF6和LiClO4下進行CV及充放電測試,以鋰金屬當參考電極及輔助電極,於放電時發生兩個反應: 1. Ni2O3 + 2Li+ + 2e- Li2O + 2NiO (1.5V vs. Li+/Li) 2. NiO + 2 Li+ + 2e- Ni + Li2O (0.38V vs. Li+/Li) 在充電過程除了1及2的逆反應之外,還有 LiNiO2 + NiO Ni2O3 + Li+ + e- (2.2V vs. Li+/Li) 反應式發生,但充電過程中僅1及2可逆,在電解質比較中,LiPF6的可逆性比LiClO4差,因為有LiF形成。NiO薄膜電極於LiClO4電解質中,在50次充放電後電容量還有439mAh/g。zh_TW
dc.description.abstractAbstract The electrolytic deposition of NiO /LiNiO2/Ni2O3 thin film on stainless steel was conducted in Ni(NO3)2 aqueous solution to be used as a negative electrode in lithium ion thin film batteries. The cathode polarization curves include 3 major electrochemical reactions: 1. O2 + 4H+ + 4e- → 2H2O (0.5 V ~ 0. 28V vs. Ag/AgCl ) 2. O2 + 2H2O+2e- → 4 OH- (0.28 V ~ -0.43 V vs. Ag/AgCl ) 3. 2H2O + 2e- → H2 + 2OH- (-0.43 V ~ -2.5 V vs. Ag/AgCl ) The coated specimen or the coating film carried out at 3rd step was subjected to annealing treatments and further characterized by XRD, TGA/DTA, SEM/EDS, AFM,TEM and Raman Spectroscopy. The as-coating film was Ni(OH)2/LiOH, condensed into NiO partially oxidized into LiNiO2/ Ni2O3 at 300℃ for 1h with the particle size is 6nm. The NiO coated specimen was further characterized by CV analysis and charge-discharge tests in LiPF6 and LiClO4 electrolytes respectively using Li metal as the reference and auxiliary electrode. During discharging tests, two electrochemical reactions occurred : The 1st , Ni2O3 + 2Li+ + 2e- Li2O + 2NiO, and the 2nd , NiO + 2 Li+ + 2e- Ni + Li2O. Beside the reverse reaction the 1st and 2nd, another reaction LiNiO2 + NiO Ni2O3 + Li+ + e- occurred for charging tests. The 1st and 2nd reactions are reversible. Also, the reversibility in LiPF6 was worse than that in LiClO4 , since LiF was formed. The capacity of NiO coated specimen was still found 439 mAh/g after 50 charge-discharge cycles test in LiClO4 electrolyte.en_US
dc.description.tableofcontents總目錄 中文摘要………………………………………………………………Ⅰ 英文摘要……………………………………………………………….II 致謝…………………………………………………………………....Ⅲ 總目錄………………………………………………………………..Ⅳ 圖目錄…………………………………………………………………Ⅷ 表目錄…………………………………………………………………XIII 第一章 緒論……………………………………………………………1 1-1 前言...................................................................................................1 1-2 研究動機與目的…………………………………………………...4 第二章理論與文獻回…………………………………………………..6 2-1 電池的種類………………………………………………………...6 2-2 二次鋰電池的基本原理…………………………………………..11 2-3 陰極材料…………………………………………………………..13 2-3-1鋰鈷氧化物………………………………………………………15 2-3-2鋰鎳氧化物………………………………………………………17 2-3-3鋰錳氧化物………………………………………………………18 2-4陽極材料…………………………………………………………...20 2-4-1石墨系……………………………………………………………20 2-4-2非石墨系........................................................................................21 2-5電解質……………………………………………………………...24 2-6電極材料傳統製備方法…………………………………………..26 2-6-1 高溫固態法…………………………………………………….27 2-6-2 沉澱法………………………………………………………….27 2-6-3 溶凝膠法……………………………………………………….28 2-6-4 噴霧法………………………………………………………….30 2-6-5 微波法………………………………………………………….30 2-6-6 水熱法………………………………………………………….31 2-6-7 電化學陰極沉積……………………………………………….32 2-7 NiO相關文獻…………………………………………………….33 第三章 實驗方法與步驟…………………………………………….43 3-1 實驗流程圖………………………………………………………43 3-2化學藥品………………………………………………………….44 3-3實驗儀器………………………………………………………….44 3-4薄膜沉積………………………………………………………….45 3-5燒結……………………………………………………………….45 3-6電池組裝………………………………………………………….46 3-7分析……………………………………………………………….46 3-7-1 薄膜厚度量測………………………………………………….46 3-7-2 X光繞射儀分析……………………………………………….46 3-7-3 穿透式顯微鏡分析(TEM)…………………………………….46 3-7-4 原子力顯微鏡分析(AFM)…………………………………….47 3-7-5導電性………………………………………………………….47 3-7-6 表面分析( SEM 和 FE-SEM)………………………………..48 3-7-7顯微拉曼光譜儀……………………………………………….48 3-7-8循環伏安分析………………………………………………….49 3-7-9循環充放電測試……………………………………………….49 第四章 結果與討論………………………………………………….50 4-1陰極極化………………………………………………………….50 4-2熱重差分析(TGA/DTA).................................................................52 4-3熱處理條件對相變化之影響…………………………………….52 4-4 沉積參數對晶體結構及顯微組織之影響………………………53 4-5電解沉積參數及熱處理條件對表面型態之影響……………….56 4-5-1 鋰的添加量對鍍層的影響…………………………………….56 4-5-2 沉積電位對鍍層的影響……………………………………….57 4-5-3 沉積時間對鍍層的影響……………………………………….57 4-5-4 熱處理條件對鍍層的影響…………………………………….58 4-6 AFM表面粗糙度之分析………………………………………58 4-7 電性分析………………………………………………………..59 4-8 電池性能之探討…………………………………………………60 4-8-1 循環伏安……………………………………………………….60 4-8-2 充放電性質…………………………………………………….63 第五章 結論…………………………………………………………68 參考文獻………………………………………………………………70 圖目錄 Fig.1-1 薄膜鋰電池之橫結面概念圖………………………………..4 Fig.2-1 鋰離子在充放電過程中往返於正負極之間概念圖……….12 Fig.2-2 當充電時由外界輸入能量﹝電能﹞,鋰離子由能量較低的正極材料被趕往負極材料中而成為能量較高的狀態圖…………….........................................................................14 Fig.2-3 LT-LiCoO2與 HT- LiCoO2之結構……………………….16 Fig.2-4 LiNiO2之結構……………………………………………...18 Fig.2-5 LiMn2O4之結構……………………………………………20 Fig.2-6 電化學陰極沉積裝置圖........................................................33 Fig.2-7 Rocksalt(NaCl)之結構………………………………….34 Fig.2-8 Face –centered cubic point lattice deferred to cubic and rhombohedral cells.................................................................34 Fig.2-9 The equilibrium phase diagrams of Ni-O…………………...35 Fig.2-10 Classification of surface morphology of Ni(OH)2 films cathodically deposition under various conditions...............................................................................37 Fig.2-11 SEM micrographs of the Ni(OH)2 and NiOx films deposited at different current…………….................................................38 Fig.2-12 Effect of deposition current density on specific capacitance of NiOx films…………………………….................................39 Fig.2-13 SEM images for as-deposited NiO thin films……………...41 Fig.2-14 Discharge capacity of the NiO thin-film electrode as a function of the cycle number and current density cycled between 0.01 and3.0V…………………………………………………….42 Fig.2-15 Specific capacity of the NiO film electrode as a function of current density a fter 100 cycles for NiO film/Li cell................42 Fig.3-1 實驗流程圖………………………………………….……….43 Fig.4-1 0.1M、0.01M、0.001M之Ni(NO3)2溶液極化曲線圖…..76 Fig.4-2 0.01M Ni(NO3)2溶液 + HCl 、0.01M Ni(NO3)2溶液通氮氣與不同濃度下的Ni(NO3)2溶液之極化曲線圖……………….77 Fig.4-3 0.02M LiNO3 + 0.01M Ni(NO3)2 溶液與0.01M Ni(NO3)2 溶液之極化曲線圖…………………………………………….78 Fig.4-4 Ni(OH)2的熱重(TGA)和熱差(DTA)分析結果,測定之升溫速率為5℃/min………………………………….......................79 Fig.4-5 Ni(OH)2粉末在不同溫度熱處理1h之XRD圖…………..80 Fig.4-6 不同沉積電位之XRD圖( Li:Ni=2:1,240s,300℃-1h)….…..81 Fig.4-7 A:-1.1V (300s),熱處理條件為300℃-1h薄膜(a)TEM繞射環圖(b)暗視野(c)明視野…………………………….82 Fig.4-8 B:Li:Ni=2:1,-1.1V (60s),熱處理條件為300℃-1h薄膜(a)TEM繞射環圖(b)暗視野(c)明視野…………...83 Fig. 4-9 A:-1.1V (300s),熱處理條件為300℃-1h,(a)5000x (b)1區:100000x(c)2區:100000x…………….…………84 Fig. 4-10 B:Li:Ni=2:1,-1.1V (60s),熱處理條件為300℃-1h,(a)5000x (b)100000x………………………………………85 Fig.4-11 不同溶液配比下沉積薄膜之sem(a) Li:Ni = 0:1 (b)Li:Ni = 1:2 (c)Li:Ni = 1:1 (d)Li:Ni = 2:1 鍍膜條件皆為 -1.1V-240s,熱處理條件皆為300℃-1h…….86 Fig. 4-12 在相同溶液配比下 Li:Ni = 2:1 沉積電位分別為 (a) -0.8V (b)-1V (c) -1.1V(d) -1.2V 240s,熱處理條件皆為300℃-1h之sem…………………………………..87 Fig.4-13 Li:Ni=2:1 沉積電位-1.1V ,(a) 60s (b)240s (c)60s之cross-section,熱處理條件皆為300℃-1h ………………88 Fig.4-14 在相同鍍膜條件,不同熱處理條件下的表面型態 (a)300℃-1h (b)300℃-3h (c)400℃-1h………………………89 Fig. 4-15 A(-1.1V (300s),熱處理條件為300℃-1h)薄膜三維AFM影像…………..…………………………………………………90 Fig.4-16 B(Li:Ni=2:1,-1.1V (60s),熱處理條件為300-1h)薄膜三維AFM影像……………...…………………………………..90 Fig.4-17 A(-1.1V,300s,熱處理條件為300℃-1h)在LiPF6 EC/DEC 電解液中 ,以0.1mV的速率,從3V掃描至0.01V之循環伏安圖.....................................................................................91 Fig. 4-18 A(-1.1V,300s,熱處理條件為300℃-1h)在LiPF6 EC/DEC 電解液中 ,第一圈放電至0.01V之拉曼分析……….91 Fig. 4-19 B(-1.1V,Li:Ni=2:1,60s,熱處理條件為300℃-1h 及400℃-1h)在LiPF6 EC/DEC 電解液中 ,以0.1mV的速率,從3V掃描至0.01V之循環伏安圖……………….92 Fig.4-20 B(-1.1V,Li:Ni=2:1,60s,熱處理條件為300℃-1h) 在LiClO4 PC 電解液中,以0.5mV的速率,從3V掃描至0.01V(cycle numbers:10)之循環伏安圖………….……93 Fig.4-21 B(-1.1V,Li:Ni=2:1,60s,熱處理條件為300℃-1h )在LiPF6 EC/DEC 電解液中,以20/40μA之充放電速率由3~0.01V……………………………………………………94 Fig.4-22 B(-1.1V,Li:Ni=2:1,60s,熱處理條件為300℃-1h)在LiPF6 EC/DEC 電解液中 ,第一圈放電至0.01V之XDR…….95 Fig.4-23 B(-1.1V,Li:Ni=2:1,60s,熱處理條件為300℃-1h) 在LiPF6 EC/DEC 電解液中 ,第一圈充電至3V之Raman95 Fig.4-24 (a)A (-1.1V,300s,熱處理條件為300℃-1h) (b)A 在LiPF6 EC/DEC 電解液中,第10圈充放電後……………96 Fig.4-25 (a)B(-1.1V,Li:Ni=2:1,60s,熱處理條件為300℃(b)B在LiPF6 EC/DEC 電解液中,第10圈充放電後…….97 Fig.4-26 B(-1.1V,Li:Ni=2:1,60s,熱處理條件為300℃-1h)充放電後之 mapping……………………………………………98 Fig.4-27 a: B(-1.1V,Li:Ni=2:1,60s,熱處理條件為300℃-1h)充放電前;b: B 第5圈充電之Raman………………..99 Fig.4-28 不同熱處理條件下之放電電容量(電解液:LiPF6 EC/DEC ) ,充放電速率20/40μA…………………….100 Fig.4-29 A(-1.1V,300s,熱處理條件為300℃-1h)在LiClO4 PC 電解液中,以20/40 μA的充放電速率,從2.5V至0.1V之充放電圖…………………………………………………..101 Fig.4-30 B(-1.1V,Li:Ni=2:1,60s ,熱處理條件為300℃-1h)在LiClO4 PC 電解液中,以20/40 μA的充放電速率,從2.5V至0.1V之充放電圖………………………………………102 Fig.4-31 B(-1.1V,Li:Ni=2:1,60s ,熱處理條件為300℃-1h)在LiClO4 PC 電解液中,以5/40 μA的充放電速率,從2.5V至0.1V之充放電圖………………………………………103 Fig.4-32 (a)B(doping Li)在LiPF6 EC/DEC 之放電圖 (b)充電圖(c)B(doping Li)在LiClO4PC 之放電圖 (d)充電圖…………………………………………………………..104 表目錄 表1 不同種類電池之比較……………………………………………9 表2 市面上常見的正極材料…………………………………………15 表3 Li-Mn-O各結構之特性、理論電容量…………………………19 表4 石墨系負極材料之比較…………………………………………21 表5 常用電解液的簡稱與性質………………………………………26 表6 溶膠-凝膠法在應用上的優缺點………………………………...30 表7 陰極極化的反應電位範圍……………………………………….50 表8 A:-1.1V (300s),熱處理條件為300℃-1h薄膜之NiO晶面間距…………………………………………………………………54 表9 B:Li:Ni=2:1,-1.1V (60s),熱處理條件為300℃-1h薄膜之NiO晶面間距……………………………………………………54 表10 不同Li含量之氧化鎳薄膜電阻率…………………………….60 表11 不同條件下之電容量…………………………………………..66zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料工程學研究所zh_TW
dc.subjectNegative Electrodesen_US
dc.subject薄膜鋰離子電池zh_TW
dc.subjectNiOen_US
dc.subjectThin-Film Lithium Ion Batteriesen_US
dc.subject負極材料zh_TW
dc.subject氧化鎳zh_TW
dc.title電解沉積摻雜Li於NiO薄膜鋰離子電池負極材料特性之研究zh_TW
dc.titlePreparation and Characterization of Electrochemical NiO film doped with Li on Stainless Steel as Negative Electrodes for Thin-Film Lithium Ion Batteriesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.