Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorWen-Bin Yehen_US
dc.contributor.authorCheng-Lung Tsaien_US
dc.identifier.citationAbe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M.E., Okuno, J.i., Takahashi, K., Blatter, H., 2013. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190-193. Alex Smith, M., Fernández-Triana, J.L., Eveleigh, E., Gómez, J., Guclu, C., Hallwachs, W., Hebert, P.D.N., Hrcek, J., Huber, J.T., Janzen, D., Mason, P.G., Miller, S., Quicke, D.L.J., Rodriguez, J.J., Rougerie, R., Shaw, M.R., Várkonyi, G., Ward, D.F., Whitfield, J.B., Zaldívar-Riverón, A., 2013. DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae): impacts after 8 years and nearly 20 000 sequences. Molecular Ecology Resources 13, 168-176. Alvarez, S., Salter, J.F., McCormack, J.E., Milá, B., 2015. Speciation in mountain refugia: phylogeography and demographic history of the pine siskin and black‐capped siskin complex. Journal of Avian Biology 46, 1-11. Andersen, J.J., Light, J.E., 2012. Phylogeography and subspecies revision of the hispid pocket mouse, Chaetodipus hispidus (Rodentia: Heteromyidae). Journal of Mammalogy 93, 1195-1215. Aoki, K., Kato, M., Murakami, N., 2011. Phylogeography of phytophagous weevils and plant species in broadleaved evergreen forests: a congruent genetic gap between western and eastern parts of Japan. Insects 2, 128-150. Aoki, K., Ueno, S., Kamijo, T., Setoguchi, H., Murakami, N., Kato, M., Tsumura, Y., 2014. Genetic differentiation and genetic diversity of Castanopsis (Fagaceae), the dominant tree species in Japanese broadleaved evergreen forests, revealed by analysis of EST-associated microsatellites. PloS ONE 9, e87429. Araya, K., Hosoya, T., 2005. Molecular phylogeny of the Dorcus velutinus species-group (Coleoptera, Lucanidae) inferred from the mitochondrial 16S rRNA gene sequences, with the special reference to the taxonomic status of its Japanese and Taiwanese members. Elytra 33, 523-530. Araya, K., 2012. Notes on Eurytrachelus dorcoides Nagel, 1939 from Sumatra, a junior synonym of Dorcus rama (Boileau, 1897) (Coleoptera, Lucanidae). Kogane, 147-150. Araya, K., 2014. A redescription of Hexarthrius sanuchi Fukinuki, 2004 (Coleoptera, Lucanidae) from Cambodia. Kogane, 103-106. Araya, K., Fujita, K., 2015. A new species of the genus Aegus from Penang Island, West Malaysia. Kogane, 123-126. Arbogast, B.S., Kenagy, G.J., 2001. Comparative phylogeography as an integrative approach to historical biogeography. Journal of Biogeography 28, 819-825. Arnold, M.L., 2015. Divergence with genetic exchange. Oxford University Press, USA. Avise, J.C., 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts. Bates, H., 1866. On a collection of Coleoptera from Formosa, sent home by R. Swinhoe, Esq., HBM Consul, Formosa. Proceedings of the Scientific Meetings of the Zoological Society of London, pp. 339-355. Beerli, P., 1998. Estimation of migration rates and population sizes in geographically structured populations. Nato Asi Series A Life Sciences 306, 39-54. Beerli, P., Felsenstein, J., 2001. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences 98, 4563-4568. Benesh, B. 1960. Lucanidea. In: Hincks, W.D. (ed.). Coleopterorum Catalogus Supplementa. Pars 8. W. Junk. Gravenhage, Netherlands. 178 pp. Belousov, A., Belousova, M., Chen, C.H., Zellmer, G.F., 2010. Deposits, character and timing of recent eruptions and gravitational collapses in Tatun Volcanic Group, Northern Taiwan: Hazard-related issues. Journal of Volcanology and Geothermal Research 191, 205-221. Bergsten, J., Bilton, D.T., Fujisawa, T., Elliott, M., Monaghan, M.T., Balke, M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G.N., 2012. The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61, 851-869. Bermingham, E., Moritz, C., 1998. Comparative phylogeography: concepts and applications. Molecular Ecology 7, 367-369. Blois, J.L., Feranec, R.S., Hadly, E.A., 2008. Environmental influences on spatial and temporal patterns of body-size variation in California ground squirrels (Spermophilus beecheyi). Journal of Biogeography 35, 602-613. Bomans, H.E., 1991. Descriptions de deux nouvelles espèces de Lucanides de I''Est asiatique (Coleoptera). Nouvelle Revue d''Entomologie (Nouvelle Serie) 8, 363-366. Boyle, W.A., 2017. Altitudinal bird migration in North America. The Auk 134, 443-465. Brunner, P.C., Chatzivassiliou, E.K., Katis, N.I., Frey, J.E., 2004. Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. Heredity 93, 364-370. Cao, Y., Webb, M.D., Bai, M., Wan, X., 2016. New synonymies and records of the stag-beetle genus Aegus MacLeay from Chinese fauna (Coleoptera: Lucanidae). Zoological Systematics 41, 261-272. Chang, Y.J., 2006. Stage Beetles. Yuan-Liou Publisher, Taipei, Taiwan (in Chinese). Chen, B., Pedro, P.M., Harbach, R.E., Somboon, P., Walton, C., Butlin, R.K., 2011. Mitochondrial DNA variation in the malaria vector Anopheles minimus across China, Thailand and Vietnam: evolutionary hypothesis, population structure and population history. Heredity 106, 241-252. Chen, C.C., Shih, C.J., 2003. Rapid Identification of three species of blow flies (Diptera: Calliphoridae) by PCR-RFLP and DNA sequencing analysis. Formosan Entomology 23, 59-70 (in Chinese). Chen, S.F., Rossiter, S.J., Faulkes, C.G., Jones, G., 2006. Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros). Molecular Ecology 15, 1643-1656. Cheng, H.L., Huang, S., Lee, S.C., 2005a. Phylogeography of the endemic goby, Rhinogobius maculafasciatus (Pisces: Gobiidae), in Taiwan. Zoological studies 44, 329-336. Cheng, Y.P., Hwang, S.Y., Lin, T.P., 2005b. Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Molecular Ecology 14, 2075-2085. Chiang, T.Y., Lin, H.D., Shao, K.T., Hsu, K.C., 2010. Multiple factors have shaped the phylogeography of Chinese spiny loach Cobitis sinensis in Taiwan as inferred from mitochondrial DNA variation. Journal of Fish Biology 76, 1173-1189. Chiang, Y.C., Hung, K.H., Schaal, B.A., Ge, X.J., Hsu, T.W., Chiang, T.Y., 2006. Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex. Molecular Ecology 15, 765-779. Chu, Y. I., 2004. Dr. Chu’s grocery: Insect catalog. Yushan Publisher, Taipei (in Chinese). Chung, J.D., Lin, T.P., Tan, Y.C., Lin, M.Y., Hwang, S.Y., 2004. Genetic diversity and biogeography of Cunninghamia konishii (Cupressaceae), an island species in Taiwan: a comparison with Cunninghamia lanceolata, a mainland species in China. Molecular Phylogenetics and Evolution 33, 791-801. Clarke, K.R., Warwick, R.M., 2001. Changes in marine communities: an approach to statistical analysis and interpretation. Clement, M., Posada, D., Crandall, K.A., 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657-1659. Creer, S., Malhotra, A., Thorpe, R.S., Chou, W.H., 2001. Multiple causation of phylogeographical pattern as revealed by nested clade analysis of the bamboo viper (Trimeresurus stejnegeri) within Taiwan. Molecular Ecology 10, 1967-1981. Dahl, E., 1987. The nunatak theory reconsidered. Ecological bulletins, 77-94. Didier, R., Séguy, E., 1953. Catalogue illustré des lucanides du globe, texte. Encyclopédie Entomologique, série A, 27. Lechevalier, P., Paris. Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214-222. Du, F., Xu, F., 2012. Gene flow dependent introgression and species delimitation. Plant Diversity and Resources 34, 257-262. Dumas, P., Barbut, J., Le Ru, B., Silvain, J.F., Clamens, A.L., d’Alençon, E., Kergoat, G.J., 2015. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PloS ONE 10, e0122407. Ellison, A.M., Buckley, H.L., Miller, T.E., Gotelli, N.J., 2004. Morphological variation in Sarracenia purpurea (Sarraceniaceae): geographic, environmental, and taxonomic correlates. American Journal of Botany 91, 1930-1935. Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611-2620. Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary bioinformatics. Online 1, 47-50. Falush, D., Stephens, M., Pritchard, J.K., 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567-1587. Fijarczyk, A., Nadachowska, K., Hofman, S., Litvinchuk, S.N., Babik, W., Stuglik, M., Gollmann, G., Choleva, L., Cogălniceanu, D., Vukov, T., 2011. Nuclear and mitochondrial phylogeography of the European fire‐bellied toads Bombina bombina and Bombina variegata supports their independent histories. Molecular Ecology 20, 3381-3398. Fujita, H., 2010. The lucanid beetles of the world. Mushi-Sha, Tokyo (in Japanese). García-Fernández, A., Iriondo, J.M., Escudero, A., Aguilar, J.F., Feliner, G.N., 2013. Genetic patterns of habitat fragmentation and past climate-change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae). American Journal of Botany 100, 1641-1650. Gemmell, A.P., Borchers, T.E., Marcus, J.M., 2014. Molecular population structure of Junonia butterflies from French Guiana, Guadeloupe, and Martinique. Psyche: A Journal of Entomology 2014: 897596. Germain, J.F., Chatot, C., Meusnier, I., Artige, E., Rasplus, J.Y., Cruaud, A., 2013. Molecular identification of Epitrix potato flea beetles (Coleoptera: Chrysomelidae) in Europe and North America. Bulletin of Entomological Research 103, 354-362. Gibbard, P., Van Kolfschoten, T., 2004. The pleistocene and holocene epochs. In: Gradstein, F.M., Ogg, J.G., Smith, A.G. (Eds.), A Geologic Time Scale 2004. University Press, Cambridge, pp. 441–452. Gimeno, C., Belshaw, R., Quicke, D.L.J., 1997. Phylogenetic relationships of the Alysiinae/Opiinae (Hymenoptera: Braconidae) and the utility of cytochrome b, 16S and 28S D2 rRNA. Insect molecular biology 6, 273-284. Goka, K., Kojima, H., Okabe, K., 2004. Biological invasion caused by commercialization of stag beetles in Japan. Global Environmental Research 8, 67-74. Goldstein, P.Z., DeSalle, R., 2011. Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. Bioessays 33, 135-147. Goloboff, P.A., Farris, J.S., Nixon, K.C., 2008. TNT, a free program for phylogenetic analysis. Cladistics 24, 774-786. Gotoh, H., Lavine, L.C., 2014. Genetic control of color polymorphism in the stag beetle Cyclommatus metallifer Boisduval (Coleoptera: Lucanidae). The Coleopterists Bulletin 68, 209-213. Gotoh, H., Miyakawa, H., Ishikawa, A., Ishikawa, Y., Sugime, Y., Emlen, D.J., Lavine, L.C., Miura, T., 2014. Developmental link between sex and nutrition; doublesex regulates sex-specific mandible growth via juvenile hormone signaling in stag beetles. PLoS Genetics 10, e1004098. Gotoh, H., Zinna, R.A., Warren, I., DeNieu, M., Niimi, T., Dworkin, I., Emlen, D.J., Miura, T., Lavine, L.C., 2016. Identification and functional analyses of sex determination genes in the sexually dimorphic stag beetle Cyclommatus metallifer. BMC Genomics 17, 250. Gotoh, H., Zinna, R.A., Ishikawa, Y., Miyakawa, H., Ishikawa, A., Sugime, Y., Emlen, D.J., Lavine, L.C., Miura, T., 2017. The function of appendage patterning genes in mandible development of the sexually dimorphic stag beetle. Developmental biology 422, 24-32. Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221-224. Grossi, P.C., 2016. A new brachypterous genus of Brazilian stag beetle (Coleoptera: Lucanidae: Lucaninae) with description of three new species. Zootaxa 4078, 218-229. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321. Gullan, P.J., Cranston, P.S., 2000. The insects: an outline of Entomology (2ed). Blackwell Science Ltd.: Oxford, UK, cap. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. Oxford University, UK, pp. 95-98. Hambäck, P.A., Weingartner, E., Ericson, L., Fors, L., Cassel-Lundhagen, A., Stenberg, J.A., Bergsten, J., 2013. Bayesian species delimitation reveals generalist and specialist parasitic wasps on Galerucella beetles (Chrysomelidae): sorting by herbivore or plant host. BMC Evolutionary Biology 13, 92. Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1-9. Han, T.M., Jeong, J.C., Kang, T.H., Lee, Y.B., Park, H.C., 2010. Phylogenetic relationships of Dorcus koreanus Jang and Kawai, 2008 (Coleoptera, Lucanidae): species or subspecies? Zoological Science 27, 362-368. Harvey, D.J., Gange, A.C., 2006. Size variation and mating success in the stag beetle, Lucanus cervus. Physiological Entomology 31, 218-226. Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R., 2003. Biological identifications through DNA barcodes. Proceeding of the Royal Society B: Biological Sciences 270, 313-321. Heled, J., Drummond, A.J., 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27, 570-580. Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913. Hewitt, G.M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359, 183-195. Hidalgo-Galiana, A., Sánchez-Fernández, D., Bilton, D.T., Cieslak, A., Ribera, I., 2014. Thermal niche evolution and geographical range expansion in a species complex of western Mediterranean diving beetles. BMC Evolutionary Biology 14, 1. Holt, B.G., Lessard, J.P., Borregaard, M.K., Fritz, S.A., Araújo, M.B., Dimitrov, D., Fabre, P.H., Graham, C.H., Graves, G.R., J?nsson, K.A., 2013. An Update of Wallace’s Zoogeographic Regions of the World. Science 339, 74-78. Hoorn, C., Wesselingh, F.P., Ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927-931. Hosoya, T., Araya, K., 2005. Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from 16S mtrRNA gene sequences, with reference to the evolution of sexual dimorphism of mandibles. Zoological Science 22, 1305-1318. Hosoya, T., Araya, K., 2006. Molecular phylogeography of the genus Neolucanus in the Ryukyu Archipelago. The Nature and Insect 41, 5-10 (in Japanese). Hsieh, J.F., Jeng, M.L., Hsieh, C.H., Ko, C.C., Yang, P.S., 2014. Phylogenetic diversity and conservation of protected click beetles (Campsosternus spp.) in Taiwan: a molecular approach to clarifying species status. Journal of insect conservation 18, 1059-1071. Hsu, Y.F., 2013. The butterflies of Taiwan. Morning Star Company, Taipei, Taiwan. Huang, C.C., Hung, K.H., Hwang, C.C., Huang, J.C., Lin, H.D., Wang, W.K., Wu, P.Y., Hsu, T.W., Chiang, T.Y., 2011. Genetic population structure of the alpine species Rhododendron pseudochrysanthum sensu lato (Ericaceae) inferred from chloroplast and nuclear DNA. BMC Evolutionary Biology 11, 108. Huang, C.C., Hsu, T.W., Wang, H.V., Liu, Z.H., Chen, Y.Y., Chiu, C.T., Huang, C.L., Hung, K.H., Chiang, T.Y., 2016. Multilocus analyses reveal postglacial demographic shrinkage of Juniperus morrisonicola (Cupressaceae), a dominant alpine species in Taiwan. PloS ONE 11, e0161713. Huang, C.W., Lee, Y.C., Lin, S.M., Wu, W.L., 2014. Taxonomic revision of Aegista subchinensis (Möllendorff, 1884) (Stylommatophora, Bradybaenidae) and a description of a new species of Aegista from eastern Taiwan based on multilocus phylogeny and comparative morphology. Zookeys 445, 31-55. Huang, C.Y., Wu, W.Y., Chang, C.P., Tsao, S., Yuan, P.B., Lin, C.W., Xiae, K.Y., 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrain of Taiwan. Tectonophysics 281, 31-51. Huang, H., Chen, C.C., 2010. Stag beetles of China I. Formosa Ecological Company, New Taipei City, Taiwan. Huang, H., Chen, C.C., 2012. A review of the genera Prismognathus Motschulsky and Cladophyllus Houlbert (Coleoptera: Scarabaeoidea: Lucanidae) from China, with the description of two new species. Zootaxa 3255, 1-36. Huang, H., Chen, C.C., 2011. Notes on Prosopocoilus Hope (Coleoptera: Scarabaeoidea: Lucanidae) from China, with the description of two new species. Zootaxa 3126, 39-54. Huang, H., Chen, C.C., 2013. Stag beetles of China II. Formosa Ecological Company, New Taipei City, Taiwan. Huang, H., Chen, C.C., 2015. Discovery of a second species of Aesalini from Taiwan, with description of the new species of the genus Echinoaesalus Zelenka, 1993 (Coleoptera: Lucanidae). Zootaxa 3920, 163-170. Huang, H., Chen, C.C., 2016. Two new species of stag beetles (Coleoptera: Lucanidae: Lucaninae) from Taiwan, China. Beetles World, 1-6. Huang, H., Chen, C.C., 2016. Two new species of stag beetles (Coleoptera: Lucanidae) from western Yunnan, China. Insecta Mundi 0516, 1-8. Huang, J.C., Wang, W.K., Peng, C.I., Chiang, T.Y., 2005. Phylogeography and conservation genetics of Hygrophila pogonocalyx (Acanthaceae) based on atpB–rbcL noncoding spacer cpDNA. Journal of Plant Research 118, 1-11. Huang, J.P., Lin, C.P., 2010. Diversification in subtropical mountains: Phylogeography, Pleistocene demographic expansion, and evolution of polyphenic mandibles in Taiwanese stag beetle, Lucanus formosanus. Molecular Phylogenetics and Evolution 57, 1149-1161. Huang, J.P., Lin, C.P., 2011. Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan. BMC Evolutionary Biology 11, 1. Huang, S., 2008. All lives born from gene: Conservation and gene diversity on Taiwanese wildlife. Forestry Bureau Taipei, 178 pp. Huang, S., Chiang, Y.C., Schaal, B.A., Chou, C.H., Chiang, T.Y., 2001. Organelle DNA phylogeography of Cycas taitungensis, a relict species in Taiwan. Molecular Ecology 10, 2669-2681. Huang, S.H., Cheng, C.H., Chen, C.N., Wu, W.J., Otuka, A., 2010. Estimating the immigration source of rice planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) (Homoptera: Delphacidae), in Taiwan. Applied Entomology and Zoology 45, 521-531. Huemer, P., Mutanen, M., Sefc, K.M., Hebert, P.D.N., 2014. Testing DNA Barcode performance in 1000 species of European Lepidoptera: Large geographic distances have small genetic impacts. PloS ONE 9, e115774. Iguchi, Y., 2013. Male mandible trimorphism in the stag beetle Dorcus rectus (Coleoptera: Lucanidae). European Journal of Entomology 110, 159-163. Jang-Liaw, N.H., Lee, T.H., Chou, W.H., 2008. Phylogeography of Sylvirana latouchii (Anura, Ranidae) in Taiwan. Zoological Science 25, 68-79. Jeratthitikul, E., Hara, T., Yago, M., Itoh, T., Wang, M., Usami, S.I., Hikida, T., 2013. Phylogeography of Fischer’s blue, Tongeia fischeri, in Japan: Evidence for introgressive hybridization. Molecular Phylogenetics and Evolution 66, 316-326. Kawano, K., 2000. Genera and allometry in the stag beetle family Lucanidae, Coleoptera. Annals of the Entomological Society of America 93, 198-207. Kawano, K., 2004. Developmental stability and adaptive variability of male genitalia in sexually dimorphic beetles. The American Naturalist 163, 1-15. Kawano, K., 2016. Comparative quantification of intralocational, interlocational, and interspecific variability in stag beetles (Coleoptera: Lucanidae) and the questions of phenotypic plasticity and species selection. Annals of the Entomological Society of America 109, 555-566. Knowles, L.L., 2000. Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution 54, 1337-1348. Kobayashi, S., Usui, R., Nomoto, K., Ushirokita, M., Denda, T., Izawa, M., 2014. Does egg dispersal occur via the ocean in the stick insect Megacrania tsudai (Phasmida: Phasmatidae)? Ecological Research 29, 1025-1032. Komaki, S., Igawa, T., Lin, S.M., Tojo, K., Min, M.S., Sumida, M., 2015. Robust molecular phylogeny and palaeodistribution modelling resolve a complex evolutionary history: glacial cycling drove recurrent mtDNA introgression among Pelophylax frogs in East Asia. Journal of Biogeography 42, 2159-2171. Kozak, K.M., Wahlberg, N., Neild, A.F., Dasmahapatra, K.K., Mallet, J., Jiggins, C.D., 2015. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Systematic Biology 64, 505-524. Krajcik, M., 2001. Lucanidae of the world, Catalogue Part I. Checklist of the stag beetles of the world (Coleoptera: Lucanidae). Milan Krajcik, Czech. Kubota, K., Kubota, N., Otobe, H., 2008. A revision of Platycerus acuticollis Y. Kurosawa (Coleoptera, Lucanidae) and its closely related species. Biogeography 10, 79-102. Kubota, K., Kubota, N., Otobe, H., Nagahata, Y., 2009. A morphological phylogeny of the genus Platycerus (Coleoptera, Lucanidae) in Japan. Biogeography 11, 57-72. Kubota, K., Nagahata, Y., Ikeda, H., Kubota, N., Otobe, H., Umetsu, K., 2011. Diversification process of stag beetles belonging to the genus Platycerus Geoffroy (Coleoptera: Lucanidae) in Japan based on nuclear and mitochondrial genes. Entomological Science 14, 411-427. Kuo, H.C., Chen, S.F., Fang, Y.P., Flanders, J., Rossiter, S.J., 2014. Comparative rangewide phylogeography of four endemic Taiwanese bat species. Molecular Ecology 23, 3566-3586. Kawano, K., 2016. Comparative quantification of intralocational, interlocational, and interspecific variability in stag beetles (Coleoptera: Lucanidae) and the questions of phenotypic plasticity and species selection. Annals of the Entomological Society of America 109, 555-566. López‐López, A., Abdul Aziz, A., Galián, J., 2015. Molecular phylogeny and divergence time estimation of Cosmodela (Coleoptera: Carabidae: Cicindelinae) tiger beetle species from Southeast Asia. Zoologica Scripta 44, 437-445. Lacroix, J.P., 1988. Descriptions de Coleoptera Lucanidae nouveaux ou peu connus (6eme note). Sciences Nat. 59, 5-7. Lai, J.S., Lue, K.Y., 2008. Two new Hynobius (Caudata: Hynobiidae) salamanders from Taiwan. Herpetologica 64, 63-80. Le Ru, B.P., Capdevielle-Dulac, C., Toussaint, E.F., Conlong, D., Van den Berg, J., Pallangyo, B., Ong''amo, G., Chipabika, G., Molo, R., Overholt, W.A., 2014. Integrative taxonomy of Acrapex stem borers (Lepidoptera: Noctuidae: Apameini): combining morphology and Poisson Tree Process analyses. Invertebrate Systematics 28, 451-475. Lee, C.F., Tsai, C.L., Konstantinov, A., Yeh, W.B., 2016. Revision of Mandarella Duvivier from Taiwan, with a new species, new synonymies and identities of highly variable species (Insecta, Chrysomelidae, Galerucinae, Alticini). Zookeys 568, 23-49. Lee, J.W., Jiang, L., Su, Y.C., Tso, I.M., 2004. Is central mountain range a geographic barrier to the giant wood spider Nephila pilipes (Araneae: Tetragnathidae) in Taiwan? A population genetic approach. Zoological studies 43, 112-122. Lee, Y.H., Lin, C.P., 2012. Pleistocene speciation with and without gene flow in Euphaea damselflies of subtropical and tropical East Asian islands. Molecular Ecology 21, 3739-3756. Lee, Y.J., Hwang, S.Y., Ho, K.C., Lin, T.P., 2006. Source populations of Quercus glauca in the last glacial age in Taiwan revealed by nuclear microsatellite markers. Journal of Heredity 97, 261-269. Legendre, P., Lapointe, F.J., 2004. Assessing congruence among distance matrices: single‐malt scotch whiskies revisited. Australian & New Zealand Journal of Statistics 46, 615-629. Li, H.Y., 2004. Taiwanese stag beetles. Kissnature Publisher, Taipei City, Taiwan (in Chinese). Li, J., Fu, C., Lei, G., 2011a. Biogeographical consequences of Cenozoic tectonic events within East Asian margins: a case study of Hynobius biogeography. PloS ONE 6, e21506. Li, T., Zhang, M., Qu, Y., Ren, Z., Zhang, J., Guo, Y., Heong, K., Villareal, B., Zhong, Y., Ma, E., 2011b. Population genetic structure and phylogeographical pattern of rice grasshopper, Oxya hyla intricata, across Southeast Asia. Genetica 139, 1-14. Liew, P.M., Chung, N.J., 2001. Vertical migration of forests during the last glacial period in subtropical Taiwan. Western Pacific Earth Sciences 1, 405-414. Lin, H.D., Chen, Y.R., Lin, S.M., 2012. Strict consistency between genetic and topographic landscapes of the brown tree frog (Buergeria robusta) in Taiwan. Molecular Phylogenetics and Evolution 62, 251-262. Lin, H.D., Hsu, K.C., Shao, K.T., Chang, Y.C., Wang, J.P., Lin, C.J., Chiang, T.Y., 2008. Population structure and phylogeography of Aphyocypris kikuchii (Oshima) based on mitochondrial DNA variation. Journal of Fish Biology 72, 2011-2025. Lin, S.C., Chen, Y.F., Shieh, S.H., Yang, P.S., 2014. A revision of the status of Psolodesmus mandarinus based on molecular and morphological evidence (Odonata: Calopterygidae). Odonatologica 43, 51-66. Lin, Z.Q., Song, F., Li, T., Wu, Y.Y., Wan, X., 2017. New mitogenomes of two Chinese stag beetles (Coleoptera, Lucanidae) and their implications for systematics. Journal of Insect Science 17, 1-9. Linares, M.C., Soto-Calderón, I.D., Lees, D.C., Anthony, N.M., 2009. High mitochondrial diversity in geographically widespread butterflies of Madagascar: a test of the DNA barcoding approach. Molecular Phylogenetics and Evolution 50, 485-495. Liu, C.Y., 2007. The genetic differentiation and geographical pathway of Loxoblemmus appendicularis complex (Orthoptera: Gryllidae) in Taiwan based on mitochondrial 16S rDNA gene and AFLP (Master Thesis). National Chung Hsing University, Taichung, Taiwan. 95 pp. Liu, D.S., Ding, M.L., 1984. The characteristics and evolution of the palaeoenvironment of China since the late Tertiary. Geology and Paleoclimatology 1, 11-40. Lu, S.Y., Hong, K.H., Liu, S.L., Cheng, Y.P., Wu, W.L., Chiang, T.Y., 2002. Genetic variation and population differentiation of Michelia formosana (Magnoliaceae) based on cpDNA variation and RAPD fingerprints: relevance to post-Pleistocene recolonization. Journal of plant research 115, 203-216. Maes, J.M., 1992. Lista de los Lucanidae (Coleoptera) del mundo. Revista Nicaragüense de Entomología 22A & B: 1–121. Mashkaryan, V., Vamberger, M., Arakelyan, M., Hezaveh, N., Carretero, M.A., Corti, C., Harris, D.J., Fritz, U., 2013. Gene flow among deeply divergent mtDNA lineages of Testudo graeca (Linnaeus, 1758) in Transcaucasia. Amphibia-Reptilia 34, 337-351. Mendes, R., Nunes, V.L., Quartau, J.A., Simoes, P.C., 2014. Patterns of acoustic and morphometric variation in species of genus Tettigettalna (Hemiptera: Cicadidae): Sympatric populations show unexpected differences. European Journal of Entomology 111, 429-441. Meyer, C.P., Paulay, G., 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422. Miwa, Y., 1927. A list of Japanese Lucanidae, with the description of one new species. Insecta Matsumurana 2, 25-31. Miwa, Y., 1931. A Study on the Lucanid-Coleoptera from the Japanese Empire 1. Transactions of the Natural History Society of Formosa 21, 315-325 (in Japanese). Miwa, Y., 1932. A Study on the Lucanid-Coleoptera from the Japanese Empire 2. Transactions of the Natural History Society of Formosa 22, 87-97 (in Japanese). Miwa, Y., 1932. A Study on the Lucanid-Coleoptera from the Japanese Empire 3. Transactions of the Natural History Society of Formosa 22, 123-132 (in Japanese). Miwa, Y., 1934. A Study on the Lucanid-Coleoptera from the Japanese Empire 5. Transactions of the Natural History Society of Formosa 24, 317-332 (in Japanese). Mizunuma, T., Nagai, S., 1994. The lucanid beetles of the world. Mushi-sha, Tokyo, Japan (in Japanese). Muraji, M., Arakaki, N., Ohno, S., Hiraiy, Y., 2008. Genetic variation of the green chafer, Anomala albopilosa (Hope) (Coleoptera: Scarabaeidae), in the Ryukyu Islands of Japan detected by mitochondrial DNA sequences. Application Entomological Zoology 43, 299-306. Nagai, S., 2001. Notes on the genus Neolucanus Thomson (Coleoptera, Lucanidae) from Taiwan. Gekkan-Mushi 364, 10-13 (in Japanese, with English descriptions for new subspecies). Ng, P.K.L., Shih, H.T., Naruse, T., Shy, J.Y., 2010. Using molecular tools to establish the type locality and distribution of the endemic Taiwanese freshwater crab Geothelphusa chiui Minei, 1974 (Crustacea: Brachyura: Potamidae), with notes on the genetic diversity of Geothelphusa from eastern Taiwan. Zoological Studies 49, 544-555. Nordal, I., 1987. Tabula rasa after all? Botanical evidence for ice-free refugia in Scandinavia reviewed. Journal of Biogeography, 377-388. Nunes, V.L., Mendes, R., Marabuto, E., Novais, B.M., Hertach, T., Quartau, J.A., Seabra, S.G., Paulo, O.S., Simões, P.C., 2014. Conflicting patterns of DNA barcoding and taxonomy in the cicada genus Tettigettalna from southern Europe (Hemiptera: Cicadidae). Molecular Ecology Resources 14, 27-38. Ohnishi, N., Uno, R., Ishibashi, Y., Tamate, H., Oi, T., 2009. The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 102, 579-589. Ohsawa, T., Tsuda, Y., Saito, Y., Sawada, H., Ide, Y., 2007. Altitudinal genetic diversity and differentiation of Quercus crispula in the Chichibu Mountains, central Japan. International Journal of Plant Sciences 168, 333-340. Oshida, T., Lin, L.K., Chang, S.W., Chen, Y.J., Lin, J.K., 2011. Phylogeography of two sympatric giant flying squirrel subspecies, Petaurista alborufus lena and P. philippensis grandis (Rodentia: Sciuridae), in Taiwan. Biological Journal of the Linnean Society 102, 404-419. Papadopoulou, A., Anastasiou, I., Vogler, A.P., 2010. Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution 27, 1659-1672. Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290. Park, Y.C., Kitade, O., Schwarz, M., Kim, J.P., Kim, W., 2006. Intraspecific molecular phylogeny, genetic variation and phylogeography of Reticulitermes speratus (Isoptera: Rhinotermitidae). Molecules and Cells 21, 89-103. Paulsen, M.J., Smith, A.B.T., 2010. Revision of the genus Chiasognathus Stephens of southern South America with the description of a new species (Coleoptera, Lucanidae, Lucaninae, Chiasognathini). Zookeys 43, 33-63. Paulsen, M.J., Hawks, D.C., 2014. A review of the primary types of the Hawaiian stag beetle genus Apterocyclus Waterhouse (Coleoptera, Lucanidae, Lucaninae), with the description of a new species. Zookeys, 77-88. Paulsen, M.J., 2017. Correction of existing generic and species concepts in Platyceroidini (Coleoptera: Lucanidae: Lucaninae) and the description of four new species of Platyceroides Benesh. Zootaxa 4269, 346-378. Perger, R., Grossi, P.C., Guerra, F., 2017. Description of a new species of the stag beetle genus Auxicerus Waterhouse, 1883 (Coleoptera: Scarabaeoidea: Lucanidae). European Journal of Taxonomy, 1-10. Pfennig, K.S., 2007. Facultative mate choice drives adaptive hybridization. Science 318, 965-967. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253-1256. Pramual, P., Adler, P.H., 2014. DNA barcoding of tropical black flies (Diptera: Simuliidae) of Thailand. Molecular Ecology Resources 14, 262-271. Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. Puechmaille, S.J., Allegrini, B., Benda, P., GÜRÜN, K., ŠRÁMEK, J., Ibanez, C., Juste, J., Bilgin, R., 2014. A new species of the Miniopterus schreibersii species complex (Chiroptera: Miniopteridae) from the Maghreb Region, North Africa. Zootaxa 3794, 108-124. Qu, Y.H., Luo, X., Zhang, R.Y., Song, G., Zou, F.S., Lei, F.M., 2011. Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evolutionary Biology 11, 174. Quinzin, M.C., Mardulyn, P., 2014. Multi-locus DNA sequence variation in a complex of four leaf beetle species with parapatric distributions: mitochondrial and nuclear introgressions reveal recent hybridization. Molecular Phylogenetics and Evolution 78, 14-24. R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Rambaut, A., Drummond, A., 2009. Tracer v1. 5: an MCMC trace analysis tool. <>. Rink, M., Sinsch, U., 2007. Radio‐telemetric monitoring of dispersing stag beetles: implications for conservation. Journal of Zoology 272, 235-243. Romiti, F., Tini, M., Redolfi De Zan, L., Chiari, S., Zauli, A., Carpaneto, G.M., 2015. Exaggerated allometric structures in relation to demographic and ecological parameters in Lucanus cervus (Coleoptera: Lucanidae). Journal of Morphology 276, 1193-1204. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539-542. Ruan, Y., House, G.L., Ekanayake, S., Schutte, U., Bever, J.D., Tang, H., Fox, G., 2014. Integration of clustering and multidimensional scaling to determine phylogenetic trees as spherical phylograms visualized in 3 dimensions. 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE, pp. 720-729. Rull, V., 2008. Speciation timing and neotropical biodiversity: the Tertiary–Quaternary debate in the light of molecular phylogenetic evidence. Molecular Ecology 17, 2722-2729. Rull, V., 2011. Neotropical biodiversity: timing and potential drivers. Trends in Ecology & Evolution 26, 508-513. Sağlam, İ.K., Küçükyıldırım, S., Çağlar, S.S., 2014. Diversification of montane species via elevation shifts: the case of the Kaçkar cricket Phonochorion (Orthoptera). Journal of Zoological Systematics and Evolutionary Research 52, 177-189. Sakaino, H., 1980. Lucanidae from Taiwan (1). Gekkan-Mushi 115, 19-24 (in Japanese). Savolainen, V., Cowan, R.S., Vogler, A.P., Roderick, G.K., Lane, R., 2005. Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1805-1811. Schoville, S.D., Roderick, G.K., Kavanaugh, D.H., 2012. Testing the ‘Pleistocene species pump’in alpine habitats: lineage diversification of flightless ground beetles (Coleoptera: Carabidae: Nebria) in relation to altitudinal zonation. Biological Journal of the Linnean Society 107, 95-111. Schwarzfeld, M.D., Sperling, F.A., 2015. Comparison of five methods for delimitating species in Ophion Fabricius, a diverse genus of parasitoid wasps (Hymenoptera, Ichneumonidae). Molecular Phylogenetics and Evolution 93, 234-248. Shao, K.T., Yen, H.W., Yu, Y.L., Lin, C.J., 2006. Taiwan biodiversity national information network. Version 2006/1. Electronic database available at http://taibnet. sinica. edu. tw. Academia Sinica, Taipei, Taiwan, ROC. Shen, C.F., 1996. The biogeography of Taiwan: 1. Background. Annual of Taiwan Museum 39, 387-427 (in Chinese). Shen, C.F., 1997. The biogeography of Taiwan: 2. Some preliminary thoughts and studies. Annual of Taiwan Museum 40, 361-450 (in Chinese). Shih, H.T., Hung, H.C., Schubart, C.D., Chen, C.A., Chang, H.W., 2006. Intraspecific genetic diversity of the endemic freshwater crab Candidiopotamon rathbunae (Decapoda, Brachyura, Potamidae) reflects five million years of the geological history of Taiwan. Journal of Biogeography 33, 980-989. Shih, H.T., Ng, P.K., Schubart, C.D., Chang, H.W., 2007. Phylogeny and phylogeography of the genus Geothelphusa (Crustacea: Decapoda, Brachyura, Potamidae) in southwestern Taiwan based on two mitochondrial genes. Zoological Science 24, 57-66. Shih, H.T., Zhou, X.M., Chen, G.X., Chien, I.C., Ng, P.K., 2011. Recent vicariant and dispersal events affecting the phylogeny and biogeography of East Asian freshwater crab genus Nanhaipotamon (Decapoda: Potamidae). Molecular Phylogenetics and Evolution 58, 427-438. Shirôzu, T., Ueda, K., 1992. Lycaenidae. In: Heppner, J.N., Inoue, H., eds. Lepidoptera of Taiwan 1, part 2: checklist. Gainesville FL: Association for Tropical Lepidoptera. pp. 136-139. Solano, E., Thomaes, A., Cox, K., Carpaneto, G.M., Cortellessa, S., Baviera, C., Bartolozzi, L., Zilioli, M., Casiraghi, M., Audisio, P., 2016. When morphological identification meets genetic data: the case of Lucanus cervus and L. tetraodon (Coleoptera, Lucanidae). Journal of Zoological Systematics and Evolutionary Research 54, 197-205. Sota, T., Liang, H.B., Enokido, Y., Hori, M., 2011. Phylogeny and divergence time of island tiger beetles of the genus Cylindera (Coleoptera: Cicindelidae) in East Asia. Biological Journal of the Linnean Society 102, 715-727. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. Talavera, G., Lukhtanov, V.A., Pierce, N.E., Vila, R., 2013. Establishing criteria for higher‐level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics 29, 166-192. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731-2739. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 2725-2729. Tanahashi, M., Kubota, K., Matsushita, N., Togashi, K., 2010. Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97, 311-317. Tanahashi, M., Hawes, C.J., 2016. The presence of a mycangium in European Sinodendron cylindricum (Coleoptera: Lucanidae) and the associated yeast symbionts. Journal of Insect Science 16, 76; 71-10. Tanikado, M., 1992. Recent findings on the stag beetles from Taiwan. Gekkan- Mushi 256, 22-25 (in Japanese). Tatsuta, H., Mizota, K., Akimoto, S.I., 2001. Allometric patterns of heads and genitalia in the stag beetle Lucanus maculifemoratus (Coleoptera: Lucanidae). Annals of the Entomological Society of America 94, 462-466. Tatsuta, H., Mizota, K., Akimoto, S.I., 2004. Relationship between size and shape in the sexually dimorphic beetle Prosopocoilus inclinatus (Coleoptera: Lucanidae). Biological Journal of the Linnean Society 81, 219-233. Tatsuta, H., Fujimoto, K., Mizota, K., Reinhardt, K., Akimoto, S.I., 2007. Distinctive developmental variability of genital parts in the sexually dimorphic beetle, Prosopocoilus inclinatus (Coleoptera: Lucanidae). Biological Journal of the Linnean Society 90, 573-581. Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57-76. Tennessen, J.A., Zamudio, K.R., 2008. Genetic differentiation among mountain island populations of the striped plateau lizard, Sceloporus virgatus (Squamata: Phrynosomatidae). Copeia 2008, 558-564. Toussaint, E.F.A., Morinière, J., Müller, C.J., Kunte, K., Turlin, B., Hausmann, A., Balke, M., 2015. Comparative molecular species delimitation in the charismatic Nawab butterflies (Nymphalidae, Charaxinae, Polyura). Molecular Phylogenetics and Evolution 91, 194-209. Tsai, C.L., Wan, X., Yeh, W.B., 2014. Differentiation in stag beetles, Neolucanus swinhoei complex (Coleoptera: Lucanidae): Four major lineages caused by periodical Pleistocene glaciations and separation by a mountain range. Molecular Phylogenetics and Evolution 78, 245-259. Tsai, C.L., Yeh, W.B., 2016. Subspecific differentiation events of montane stag beetles (Coleoptera, Lucanidae) endemic to Formosa Island. PloS ONE 11, e0156600. Tsao, W.C., Yeh, W.B., 2008. DNA-based discrimination of subspecies of swallowtail butterflies (Lepidoptera: Papilioninae) from Taiwan. Zoological Studies 47, 633-643. Tseng, S.P., Li, S.H., Hsieh, C.H., Wang, H.Y., Lin, S.M., 2014. Influence of gene flow on divergence dating–implications for the speciation history of Takydromus grass lizards. Molecular Ecology 23, 4770-4784. Tseng, S.P., Wang, C.J., Li, S.H., Lin, S.M., 2015. Within-island speciation with an exceptional case of distinct separation between two sibling lizard species divided by a narrow stream. Molecular Phylogenetics and Evolution 90, 164-175. Waldrop, E., Hobbs, J.P.A., Randall, J.E., DiBattista, J.D., Rocha, L.A., Kosaki, R.K., Berumen, M.L., Bowen, B.W., 2016. Phylogeography, population structure and evolution of coral‐eating butterflyfishes (Family Chaetodontidae, genus Chaetodon, subgenus Corallochaetodon). Journal of Biogeography 43, 1116–1129. Waltari, E., Hijmans, R.J., Peterson, A.T., Nyári, Á.S., Perkins, S.L., Guralnick, R.P., 2007. Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PloS ONE 2, e563. Wang, H.Y., Tsai, M.P., Yu, M.J., Lee, S.C., 1999. Influence of glaciation on divergence patterns of the endemic minnow, Zacco pachycephalus, in Taiwan. Molecular Ecology 8, 1879-1888. Wang, L.J., 2000. Dragonflies of Taiwan. Jenjen calendar company, New Taipei City, Taiwan (in Chinese). Wang, T.Y., Liao, T.Y., Tzeng, C.S., 2007. Phylogeography of the Taiwanese endemic hillstream Loaches, Hemimyzon formosanus and H. taitungensis (Cypriniformes: Balitoridae). Zoological Studies 46, 547-560. Weigelt, P., Steinbauer, M.J., Cabral, J.S., Kreft, H., 2016. Late Quaternary climate change shapes island biodiversity. Nature 532, 99-102. Weng, Y.M., Yang, M.M., Yeh, W.B., 2016a. A comparative phylogeographic study reveals discordant evolutionary histories of alpine ground beetles (Coleoptera, Carabidae). Ecology and Evolution 6, 2061-2073. Weng, Y.M., Yeh, W.B., Yang, M.M., 2016b. A new species of alpine Apenetretus Kurnakov (Coleoptera, Carabidae, Patrobini) from Taiwan: evidences from DNA barcodes and morphological characteristics. Zookeys 584, 121-134. Whitman, D.W., Agrawal, A.A., 2009. What is phenotypic plasticity and why is it important? In: Whitman, D.W., Ananthakrishnan, T.N. (Eds.), Phenotypic Plasticity of Insects: Mechanism and Consequences. Science Publishers, Enfield, NH, USA, pp. 1-63. Wiemers, M., Fiedler, K., 2007. Does the DNA barcoding gap exist?–a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4, 8. Williams, P.H., Brown, M.J.F., Carolan, J.C., An, J.d., Goulson, D., Aytekin, A.M., Best, L.R., Byvaltsev, A.M., Cederberg, B., Dawson, R., 2012. Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Systematics and Biodiversity 10, 21-56. Williams, P.H., Byvaltsev, A.M., Cederberg, B., Berezin, M.V., Ødegaard, F., Rasmussen, C., Richardson, L.L., Huang, J., Sheffield, C.S., Williams, S.T., 2015. Genes suggest ancestral colour polymorphisms are shared across morphologically cryptic species in arctic bumblebees. PLoS ONE 10, e0144544. Willis, K.J., Whittaker, R.J., 2000. The refugial debate. Science 287, 1406-1407. Wirta, H., 2009. Complex phylogeographical patterns, introgression and cryptic species in a lineage of Malagasy dung beetles (Coleoptera: Scarabaeidae). Biological Journal of the Linnean Society 96, 942-955. Wu, I.H., Yang, P.S., Liu, C.Y., Yeh, W.B., 2010. Genetic differentiation of Troides aeacus formosanus (Lepidoptera: Papilionidae), based on cytochrome oxidase I sequences and amplified fragment length polymorphism. Entomological Society of America 103, 1018-1024. Wu, S.P., Huang, C.C., Tsai, C.L., Lin, T.E., Jhang, J.J., Wu, S.H., 2016. Systematic revision of the Taiwanese genus Kurixalus members with a description of two new endemic species (Anura, Rhacophoridae). Zookeys, 121-153. Yang, C.T., 1963. Studies on the Lucanid-Coleoptera in Taiwan. Bulletin of the Society of Entomology 2, 41-57 (in Chinese). Yang, H., Lin, C.P., Liang, A.P., 2016. Phylogeography of the rice spittle bug (Callitettix versicolor) implies two long-term mountain barriers in south China. Zoological Science 33, 592-602. Yang, J.U., Lin, Y.S., Wu, J.L., Hui, C.F., 1994. Variation in mitochondrial DNA and population structure of the Taipei treefrog Rhacophorus taipeianus in Taiwan. Molecular Ecology 3, 219-228. Ye, Z., Zhu, G.P., Chen, P.P., Zhang, D.L., Bu, W.J., 2014. Molecular data and ecological niche modelling reveal the Pleistocene history of a semi‐aquatic bug (Microvelia douglasi douglasi) in East Asia. Molecular Ecology 23, 3080-3096. Yeh, H.T., Ko, C.C., Hsu, T.C., 2006. Diagnostic techniques for the quarantine pest, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae). Formosan Entomology 26, 283-293 (in Chinese). Yeh, H.T., Ko, C.C., Hsu, T.C., Shih, C.J., 2005. PCR-RFLP technique for molecular identification of Rhopalosiphum (Aphididae). Formosan Entomology 25, 33-45 (in Chinese). Yeh, W.B., Chang, Y.L., Lin, C.H., Wu, F.S., Yang, J.T., 2004. Genetic differentiation of Loxoblemmus appendicularis complex (Orthoptera: Gryllidae): speciation through vicariant and glaciation events. Entomological Society of America 97, 613-623. Yeh, W.B., Lee, H.M., Tu, W.C., Tang, L.C., Lee, P.Y., 2009. Molecular differentiation and diversity of Forcipomyia taiwana (Diptera: Ceratopogonidae) based on the mitochondrial cytochrome oxidase II sequence. Journal of Medical Entomology 46, 249-256. Yeh, W.B., Yang, C.T., Hui, C.F., 1998. Phylogenetic relationships of the Tropiduchidae-group (Homoptera: Fulgoroidea) of planthoppers inferred through nucleotide sequences. Zoological Studies 37, 45-55. Yu, H.Y., 2011. Detection of the long distance movement of Chestnut Tiger (Parantica sita niphonica Moore) based upon the evidence of population genetic structure (Master Thesis). Taiwan: National Taiwan University, 56 pp. Yu, T.L., Lin, H.D., Weng, C.F., 2014. A new phylogeographic pattern of endemic Bufo bankorensis in Taiwan island is attributed to the genetic variation of populations. PloS ONE 9, e98029. Zhang, J., Kapli, P., Pavlidis, P., Stamatakis, A., 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869-2876. Zhang, L., An, B., Backström, N., Liu, N., 2014. Phylogeography-based delimitation of subspecies boundaries in the common pheasant (Phasianus colchicus). Biochemical Genetics 52, 38-51. Zhang, Q., Ge, Y., Wu, Y., Wan, X., 2016. Taxonomic notes on some species of Neolucanus Thomson (Coleoptera: Lucanidae) from China. Zoological Systematics 41, 195-206. Zhang, W.Z., Xiong, X.M., Zhang, X.J., Wan, S.M., Guan, N.N., Nie, C.H., Zhao, B.W., Hsiao, C.D., Wang, W.M., Gao, Z.X., 2016. Mitochondrial genome variation after hybridization and differences in the first and second generation hybrids of bream fishes. PloS ONE 11, e0158915. Zhou, C., Chen, X., He, R., 2012. COII phylogeography reveals surprising divergencies within the cryptic butterfly Kallima inachus (Doyére, 1840) (Lepidoptera: Nymphalidae: Kallimini) in southeastern Asia. The Pan-Pacific Entomologist 88, 381-398. Zhou, Y., Duvaux, L., Ren, G., Zhang, L., Savolainen, O., Liu, J., 2017. Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity 118, 211-220.zh_TW
dc.description.abstract台灣生物相的演化史深受更新世冰河期氣候變動與中央山脈(Central Mountain Range, CMR)的地理隔離影響;在冰河事件與山脈阻隔雙重影響下,島上九種特有鍬形蟲的遺傳分化、種化及分類議題,備受注目。台灣產鍬形蟲之特有種與特有亞種比例高(約87%),部分爭議達數十年之久,其形態變異與局域適應相關;生物地理親緣研究涉及族群結構、遺傳分化、分子定年與遷徙路徑,可應用於解析島上鍬形蟲的演化歷程。本研究檢視台灣鍬形蟲的遺傳變異及闡明部分高山鍬形蟲的演化史,依據COI、16S rDNA及28S rDNA所建構的48種台灣鍬形蟲親緣關係顯示多數物種為單系群,兩個粒線體基因顯示種內遺傳距離多小於2%、種間變異大於2%,可有效鑑定多數物種。COI與16S rDNA之分析結果也確認黑腳深山鍬形蟲(Lucanus ogakii)、栗色深山鍬形蟲(L. kanoi)及金鬼鍬形蟲(Prismognathus davidis)的兩個亞種位階,與其地理分布相關,分化時間約發生於70-100萬年前。此外,黑腳深山鍬形蟲、栗色深山鍬形蟲與高砂深山鍬形蟲間,可能存在種間基因滲入/雜交事件。紅圓翅鍬形蟲複合群(Neolucanus swinhoei complex)由於形態鑑識特徵不明確、成蟲飛行能力弱及生活史約兩週,演化故事相形複雜、分類爭議近90年之久;本研究使用九個形態特徵與四個分子標誌(COI、16S rDNA、28S rDNA及wingless)來釐清其分類位階及遺傳分化;依據COI、16S rDNA及wingless之親緣關係顯示可分為一個東部與三個西部支系,後者分別為一個低海拔廣布支系與兩個山區支系;東、西部支系約於100萬年前分化,西部各支系約於50-75萬年前;考量這些鍬形蟲具共同的地理親緣史、形態鑑定特徵不明確及支系內不同族群間的DNA混雜狀況,這些圓翅鍬形蟲皆應視為紅圓翅鍬形蟲(Neolucanus swinhoei Bates, 1866)。為了進一步闡明此複合群的演化史,採集西北部山區各海拔及全台各地的族群;結果顯示中央山脈西北部(northwestern-CMR, NW-CMR)與廣布(Widespread)支系共存於許多西北山區海拔族群,廣布(Widespread)支系則遍布全島。定年時間顯示兩大支系起源於64萬年前,各支系分歧則在45-64萬年前。NW-CMR支系的四個分支有地理分布特性,分歧時間可追溯至25-48萬年前的里斯/民德冰期;同山區各高山族群遺傳組成相似且族群變動分析顯示有從低海拔往高海拔遷徙的趨勢,將有利於不同山頭族群間的遺傳交流。最後,了解廣布支系內的東部族群起源,將有助於釐清中央山脈的阻隔影響,COI與16S rDNA的親緣分析顯示廣佈支系具有南、北地域分化的趨勢且族群內變異大;同時,分子定年顯示主要分歧時間與里斯冰期有關,而隨後形成的分支則與最後一次冰河期相關;兩段基因顯示全台族群皆有的主基因單型,可能受祖先基因多型性及冰河期循環的族群擴增影響;儘管中央山脈在族群遷徙上扮演重要角色,但東部族群可藉由山脈南、北兩端低海拔山區遷徙過去。因此,山脈阻隔伴隨週期性冰河期是造成這些成蟲期短、遷移力弱、高山適應性鍬形蟲遺傳分化的主因。zh_TW
dc.description.abstractEvolutionary history of Taiwanese biota has significantly affected by the climatic oscillation in Pleistocene and vicariance events of the Central Mountain Range (CMR). With the influence of glaciation events and the mountain hindrances, issues upon genetic differentiation, speciation, and taxonomic recognition of nine endemic stag beetles have been appealing in Taiwan. Several taxonomic debates have been carrying on for decades over Taiwanese stag beetles, which consist of a high proportion of endemic species and subspecies, i.e. about 87%, featuring morphological variations associated with local adaptation. Phylogeographic studies involving population structure, genetic differentiation, molecular dating, and dispersal routes of Taiwanese organisms could be applied to resolve the evolutionary processes of extant taxa. The study herein is to survey genetic variations of Taiwanese stag beetles and to unravel the evolutionary history of several montane stag beetles. Phylogenetic inferences based on COI+16S rDNA+28S rDNA of 48 Taiwanese lucanid species have confirmed most species are monophyletic groups; and the intraspecific (<2%) and interspecific (>2%) genetic distances of the two mitochondrial genes could be applied concordantly for taxonomic identification. COI and 16S rDNA have also confirmed the two subspecific status each for Lucanus ogakii, L. kanoi, and Prismognathus davidis which are congruent with their geographic distribution in this island and their subspecific split events might have occurred 0.7-1 million years ago (Mya). Moreover, genetic differentiation including introgression/hybridization events might have occurred among L. ogakii, L. kanoi, and L. maculifemoratus. About the more complicated evolutionary story in a 90-year controversy of Neolucanus swinhoei complex, a group of stag beetles with overlapping morphological characteristics, limited/weak flight capability, and two-week adult lifespan, nine morphological characteristics and four molecular amplicons, i.e. COI, 16S rDNA, 28S rDNA, and wingless, are exploited to address their taxonomic status and genetic differentiation. Phylogenetic inferences based on COI+16S rDNA+wingless showed one eastern and three western lineages, with the latter consisting of one low-hill Widespread and two montane lineages. The differentiation events of western and eastern lineages might have occurred ca. 1 Mya and the differentiation in western ones happened approximately 0.50-0.75 Mya. In consideration of these stag beetles have shared phylogeographical history, overlapping morphological characteristics, and intermingled DNA sequences from different populations within each lineage, all of these stag beetles should be regarded as Neolucanus swinhoei Bates, 1866. To further elucidate the evolutionary history of N. swonhoei complex, more individuals were collected from different altitudinal populations of the northwestern (NW) areas and across Taiwan Island. Results showed the coexistence of both NW-CMR and Widespread Lineage in many altitudinal populations, and Widespread Lineage existed all over Taiwan Island. Calibration dating showed that these two lineages might have originated prior to 0.64 Mya and differentiated during 0.45-0.64 Mya. In NW-CMR Lineage, four major clades are corresponding to their geographic distribution and their diversification events could be dated back to 0.25-0.48 Mya in Riss/Mindel glaciations. Similar genetic compositions are found among montane populations in the same muntain area and the demographic analysis showed a dispersal trend from hill to montane areas which would facilitate the genetic exchanges among different montane populations. Finally, to understand the origination of eastern populations of the Widespread Lineage would be helpful to elucidate the effect of the CMR hindrance. Phylogenetic inference, on the basis of COI and 16S rDNA, showed a tendency of north-south genetic differentiation and high variance components within populations. Meanwhile, molecular dating shown major diversifications were associated with Riss glaciations, while the subsequent forming lineages were in correlation to the Last Glacial Maximum. Both genes revealed that major haplotypes across all populations might be resulted by ancestral polymorphisms and the possible expansion events during glacial cycles. Although the CMR did play a vital effect on their dispersal, the eastern populations might have originated via lower mountain areas of northern and southern CMR. Thus, geological effects of mountain hindrance accompanied by periodical glaciations could have been vital impact leading to the genetic differentiation of these limited/weak flight capability, two-week adult lifespan, and montane-adaptive stag beetles.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii List of tables x List of figures xii Chapter 1: General introduction 1 1.1. Introduction of stag beetles 1 1.2. Studies of stag beetles all over the world 2 1.3. Origin of Taiwanese stag beetles 4 1.4. Influence of Pleistocene glaciations in Taiwanese biota 6 1.5. Formation of Taiwan Island and its biodiversity 7 1.6. Evolutionary hypotheses proposed for Taiwanese biota 8 1.7. Dispersal capability of stag beetles 9 1.8. Taxonomic debates among stag beetles in Taiwan Island 10 1.9. Application of molecular tools for taxonomic studies 10 1.10. Aims of this study 11 Chapter 2: Subspecific differentiation events of montane stag beetles (Coleoptera, Lucanidae) endemic to Taiwan Island 14 2.1. Introduction 15 2.2. Materials and methods 19 2.2.1. Sample collection 19 2.2.2. DNA extraction, amplification, and sequencing 19 2.2.3. Phylogenetic analyses 20 2.2.4. Diversification calibration 21 2.2.5. Species delimitation 22 2.2.6. Network analyses 23 2.2.7. Hybridization test for taxonomically debated species 23 2.3. Results 23 2.3.1. Sequence composition of COI, 16S rDNA, and 28S rDNA genes in Lucanidae 23 2.3.2. Sequence variations in Lucanidae 24 2.3.3. Phylogenetic analyses 25 2.3.4. Species delimitation and possible hybridization of taxonomically debated Lucanus, Prismognathus, and Neolucanus stag beetles 25 2.3.5. Genetic differentiation in taxonomically debated Lucanus and Prismognathus stag beetles 26 2.3.6. Divergence calibration in taxonomically debated Lucanus and Prismognathus stag beetles 26 2.4. Discussion 27 2.4.1. Genetic divergence and phylogeographic history for montane stag beetles 27 2.4.2. Taxonomic delineation and genetic divergence 31 2.5. Summary 34 Chapter 3: Differentiation in stag beetles, Neolucanus swinhoei complex (Coleoptera: Lucanidae): Four major lineages caused by periodical Pleistocene glaciations and separation by a mountain range 36 3.1. Introduction 37 3.2. Materials and methods 41 3.2.1. Sample collection 41 3.2.2. DNA extraction, amplification, and sequencing 41 3.2.3. Phylogenetic analyses 42 3.2.4. Lineage calibration 43 3.2.5. Demographic analyses 43 3.2.6. Divergent and network analyses among populations 44 3.2.7. Morphological character analyses 45 3.3. Results 47 3.3.1. Sequence variation within and among N. swinhoei populations 47 3.3.2. Phylogenetic analyses 47 3.3.3. Divergence time of lineages 48 3.3.4. Haplotype networks 48 3.3.5. Genetic diversity and structure 49 3.3.6. Population demography 51 3.3.7. Morphological analyses among populations of N. swinhoei complex 52 3.3.8. Measurable characteristics 52 3.4. Discussion 53 3.4.1. Gene flow between populations in N. swinhoei complex 53 3.4.2. Phylogeographical history 54 3.4.3. Character variation and taxonomic status in N. swinhoei complex 56 3.5. Summary 58 Chapter 4: Possible mechanisms of genetic exchange between montane and hilly lineages via altitudinal shifts in the northwestern populations of Neolucanus swinhoei complex (Coleoptera, Lucanidae): genetic introgression and geographic differentiation 59 4.1. Introduction 60 4.2. Materials and methods 63 4.2.1. Sample collection 63 4.2.2. DNA extraction, amplification, and sequencing 64 4.2.3. Phylogenetic analyses 64 4.2.4. Diversification calibration 65 4.2.5. Demographic analyses 65 4.2.6. Divergent and network analyses among populations 67 4.3. Results 67 4.3.1. Sequence composition of COI, 16S rDNA, and wingless genes 67 4.3.2. Phylogenetic analyses 68 4.3.3. Divergence time 68 4.3.4. Haplotype network 69 4.3.5. Genetic structure 70 4.3.6. Population demography 71 4.4. Discussion 72 4.4.1. Introgression and ancestral retention 72 4.4.2. Phylogeographical story 74 4.5. Summary 76 Chapter 5: Population structure and genetic differentiation of the Widespread Lineage of Neolucanus swinhoei complex (Coleoptera, Lucanidae) across Taiwan Island 77 5.1. Introduction 78 5.2. Materials and methods 80 5.2.1. Sample collection 80 5.2.2. DNA extraction, amplification, and sequencing 81 5.2.3. Phylogenetic analyses 81 5.3. Results 82 5.3.1. Sequence composition of COI and 16S rDNA genes 82 5.3.2. Phylogenetic analyses 82 5.3.3. Divergence time calibration 83 5.3.4. Haplotype network of Widespread Lineage in N. swinhoei complex 83 5.3.5. Genetic diversity and structure 84 5.3.6. Population demography 85 5.4. Discussion 85 5.4.1. Inconsistent genetic differentiation between COI and 16S rDNA 85 5.4.2. Evolutionary history of Widespread Lineage in N. swinhoei complex 86 5.4.3. Origin of eastern populations 88 5.5. Summary 90 Chapter 6: Conclusions 91 References 94 Appendix 1. Information of Taxon ID, collecting locality, GPS coordinates, and accession numbers of studied genes of each stag beetle analyzed in Chapter 2 180 Appendix 2. Collecting locality, abbreviation, and accession numbers for the studied genes of each Neolucanus stag beetle and its inference taxon used in Chapter 3 194 Appendix 3. Information of Taxon ID, collecting locality, altitudinal populations of each mountain area, GPS coordinates, and accession numbers for the studied gene of each Neolucanus stag beetle analyzed in Chapter 4 199 Appendix 4. Information of Taxon ID, collecting locality, GPS coordinates, and accession numbers of COI and 16S rDNA of each Neolucanus stag beetle analyzed in Chapter 5 207 Appendix 5. Published paper of Chapter 2: Subspecific differentiation events of montane stag beetles (Coleoptera, Lucanidae) endemic to Formosa Island 211 Appendix 6. Published paper of Chapter 3: Differentiation in stag beetles, Neolucanus swinhoei complex (Coleoptera: Lucanidae): Four major lineages caused by periodical Pleistocene glaciations and separation by a mountain range 234zh_TW
dc.subjectPleistocene glaciationsen_US
dc.subjectmountain hindranceen_US
dc.subjectstag beetlesen_US
dc.subjectNeolucanus swinhoei complexen_US
dc.titleGenetic variation of stag beetles (Coleoptera, Lucanidae) in Taiwan: subspecific differentiation events of endemic montane stag beetles and phylogeography of Neolucanus swinhoei complexen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:昆蟲學系
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-8099036002-1.pdf31.94 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.