Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95732
標題: 玉山國家公園主峰線植物物候研究
Plant Phenoloy along Main Peak Trail in Yusan National Park
作者: 方韻茹
Yun-Ju Fang
關鍵字: 高山生態系;開花與結實物候;氣候變遷;極端天氣;玉山杜鵑;積溫模式;Alpine ecosystem;flowering and fruiting phenology climate change;extreme weather;Rhododendron pseudochrysanthum;accumulative temperature model
引用: 王安翔、龔楚媖、吳宜昭、于宜強 (2016) 2016 年 1 月臺灣地區寒害事件彙整與分析。國家災害防救科技中心災害防救電子報128: 1-15。 交通部中央氣象局(2016)氣象監測報告。 交通部中央氣象局(2017)氣象監測報告。 交通部中央氣象局(2018)氣象監測報告。 吳佳穎、曾喜育、邱清安、王秋美、劉思謙、曾彥學 (2013) 雪山雪東線步道種子植物開花物候之調查。林業研究季刊35(4): 223-240。 呂理昌 (1990) 玉山國家公園東埔玉山區開花物候週調查報告。內政部營建署玉山國家公園管理處委託報告。 邦卡兒‧海放南 (2007) 塔塔加地區高山植物的物候期。林業研究專訊14(5): 16-22。 張致盛 (2010) 葡萄芽體休眠及解除機制。臺中區農業改良場特刊 105: 73-77。 陳中 (2005) 臺灣梨樹的芽休眠生理與調控。梨栽培管理技術研討會專輯429-454。 曾喜育、郭礎嘉、陳玟璇、湯冠臻、曾彥學 (2014) 玉山國家公園塔塔加-玉山主峰線步道開花與結實物候調查。國家公園學報24 (1): 58-75。 潘振彰 (2012) 溫度對雪山地區玉山杜鵑開花物候之影響。國立中興大學森林學系碩士論文。 薛兆翔 (2017) 雪見地區植物開花結實物候及特殊低溫事件之影響。中興大學森林學系所學位論文。 王鑫(1984)臺灣沿海地區自然環境保護之研究「後續計畫」-地形景觀資源調查報告。中華民國自然生態保育協會。 陳正祥 (1957) 氣候之分類與分區。國立臺灣大學農學院。 程延年、葉貴玉、劉進全、盧佳遇 (1988) 玉山國家公園東埔玉山區地質調查暨解說規劃研究報告內政部營建署。共 192 頁。 梁鉅榮( 1961) 臺灣山地之土壤。臺灣銀行季刊12(4): 78-95。 潘學標 (2003) 作物模型原理。氣象出版社。 符瑜,潘學標 (2011) 草本植物物候及其物候類比模型的研究進展。中國農業氣象32(3): 319-325。 梁立明、陳明義 (2000) 關刀海森林生態系臺灣二葉松與臺灣五葉松之物候現象。林業研究季刊22(3): 69-80。 曾彥學、曾喜育 (2013) 氣候變遷對雪山高山生態系之衝擊研究-雪山植物開花物候與植群動態之研究。雪霸國家公園管理處。 Hopkins, G.W. and N.P.A. Huner (2013) 溫度:植物發育及分布。徐善德、廖玉琬。植物生理學。偉明圖書有限公司。465-469。 Cannell, M. G. R. and R. I. Smith (1983) Thermal time, chill days and predictionof budburst in Picea sitchensis. Journal of Applied Ecology 20: 951-963. Beaubien, E. and A. Hamann (2011) Spring flowering response to climate change between 1936 and 2006 in Alberta, Canada. BioScience 61(7): 514–524. Bertin, R. I. (2007) Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society 135(1): 126-146. Billing, W. D. and H. A. Mooney (1968) The ecology of Arctic and alpine plants. biological Reviews 43(4): 481-529. Cannell, M. G. R. and R. I. Smith (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology 20: 951-963. Christiaens, A., M. C. Van Labeke, E. Pauwels, B. Gobin, E. de-Keyser and J. De Riek (2010) Flowering quality of azalea (Rhododendro simii) following treatments with plant growth regulatore. International Society for Horticultural Science 937:219-224 Chuine, I., M. Bonhomme, J. M. Legave, I. G.de Cortazar-Atauri, G. Charrie, Lacointe A. and T. Améglio (2014). Can phenological models predict tree phenology accurately under climate change conditions? EGU General Assembly Conference Abstracts 16: 12973. Cleland, E. E., I. Chuine, A. Menzel, H. A. Mooney and M. D. Schwartz (2007) Shifting plant phenology in response to global change. Trends in Ecology and Evolution 22 (7): 357-365 Donat, M. G. and Alexander L. V. (2012) The shifting probability distribution of global daytime and night-time temperatures. Geophysical Research Letters, 39, L14707. Gordon, R and A. Bootsma (1993) Analyses of growing degree-days for agriculture in Atlantic Canada. Climate Research 3:169-76. Hannerz, M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Canadian Journal of Forest Research 29: 9-19. Inouye, D. W. (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology Society of America 89(2): 353-362. Inouye, D. W. and A. D. McGuire (1991) Effects of snowpack on timing and abundance of flowering in Delphinium nelsonii (Ranunculaceae):implications for cimate change. American Journal of Botany 78(7): 997-1001. Inouye, D. W., F. Saavedra and W. Lee-Yang. (2003) Environmental influences on the phenology and abundance of flowering by Androsace septentrionalis (Primulaceae). American Journal of Botany 90: 905-10. Kaku, S., M. Iwaya and K.B. Jeon (1983) Effect of temperature on cold acclimation and deacclimation in flower buds of evergreen azaleas. Plant & Cell Physiology 24(3): 557-564. Kaku, S., M. Iwaya and M. Kunishige (1980) Supercooling ability of Rhododendron flower buds in relation to cooling rate and cold hardiness. Plant & Cell Physiology 21(7): 1205-1216. Körner, C. (2003) Apline plant life:functional plant ecology of high mountain ecosystem. 2nd ed. Springer incorporation.223-335 Lamsal, A. and S. Welch (2016) Modelling flowering time of rhododendron. Journal of Hill Agriculture 7(2): 231-236. Lill, B.S. (1976) Ovules and seed development in Pinus radiata: postmeiotic development, fertilization, and embryogeny. Canadian Journal of Botany 54: 2141-2154. Linkosalo, T., R. Häkkinen, J. Terhivuo, H. Tuomenvirta and P. Hari (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agricultural and Forest Meteorology 149(3-4): 453-461. Linkosalo, T., H. K. Lappalaonen and P. Hari (2008) A comparsion of phonological model of leaf bud and flowering of boreal trees using independent observations. Tree Physiology 28: 1873-1882. Linkosalo, T., R. Häkkinen , J. Terhivuo , H. Tuomenvirta and P. Hari (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agricultural and Forest Meteorology 149(3-4): 453-461. Linkosalo, T., R. Hänninen and H. Hänninen (2006) Model of the phenology of boreal and temperate tree: is there something missing? Tree Physiology 26: 1165-1172. Menel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm‐kübler, P. Bissolli, O. Braslavská, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, Å. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. Måge, A. Mestre, Ø. Nordli, J. Peñuelas, P. Pirinen, V. Remišová, H. Scheifinger, M. Striz, A. Susnik, A. J. H. Van Vliet, F‐E Wielgolaski, S. Zach And A. Zust (2006) European phenological response to climate change matches the warming pattern. Global Change Biology 12(10): 1969-1976. Murray, M. B., M. G. R. Cannel and R. I. Smith (1989) Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology 26: 693-700. Murray, M. B., M. G. R. Cannel and R. I. Smith (1989) Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology 26: 693-700. Post, E and N. C. Stenseth (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80(4): 1322-1339. Reaumur, M. (1735) Observations du thermomètres, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l’Amérique. Academie des Rossi, S., Isabel, N. (2016) Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming. Global Change Biology 23: 446-454. Schneider, E. F. (1968) The rest period of Rhododendron flower buds I. Effect of the bud scales on the onset and duration of rest. Journal of Experimental Botany 19(4): 817–824. Schneider, E. F. (1970) The rest period of rhododendron flower buds: II. Studies on the rest period in tissue 3in situ Journal of Experimental Botany 21(3): 799–807 Su, H. J. (1984) Studies on the climate and vegetation types of the natural forests in Taiwan (II). Altitudinal vegetation zones in relation to temperature gradient. Quarterly Jounal of Chinese Forestry 17(4): 57-73. Walker, D. M., R. C. Ingersoll and P. J. Webber (1995) Effects of interannual climate variation on phenology and growth of two alpine forbs. Ecological Society of America 76(4): 1067-1083. Wipf, S., V. Stoeckli and P.Bebi (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94(1–2):.105–121. Yan W. and L. A. Hunt (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany 84: 607-614. Zang, L., R. Turkington and Y. Tang (2010) Flowering and fruiting phenology of 24 plant species on the north slope of Mt. Qomolangma(Mt. Everest). Journal of Mountain Science 7: 45-54. Forrest, J. and A. J. Miller-Rushing (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B 365(1555): 3101-3112 Makrodimosa, N., G. J. Blionisa, N. Krigasb, D. Vokou (2008) Flower morphology, phenology and visitor patterns in an alpine community on Mt Olympos, Greece. Flora-Morphology, Distribution, Functional Ecology of Plants 203(6): 449-468
摘要: 
玉山國家公園為臺灣3座典型高山國家公園之一,本研究於玉山國家公園塔塔加-玉山主峰之玉山主峰線步道進行植物開花與結實物候調查,並針對玉山杜鵑進行縮時攝影拍攝,測量玉山杜鵑((Rhododendron pseudochrysanthum))花芽的生長發育,配合日均溫的變化,建立打破花芽休眠的基礎溫度,並推測積溫起始時間,利用不同積溫起始日與基準溫度進行玉山杜鵑熱量累積的閥值運算,預測其開花時間。
研究調查期間自2016年3月至2018年4月,共紀錄到233種植物,其中有210種植物開花,179種植物結實。逐月開花物種數與溫度具顯著相關性,與降雨相關不顯著,逐月結實物種數與開花的趨勢相似,大約晚開花物種高峰期1-3個月。鐵杉雲杉林帶 (Tsuga-Picea Forest Zone) 調查到178種植物開花,164種植物結實;於冷杉林帶Abies Forest Zone)調查到101種植物開花,89種植物結實;於高山植群帶Alpine vegetation Zone)調查到53種植物開花,43種植物結實。植物開花結實物種數隨著海拔升高有減少的趨勢;隨海拔上升,分布的物種數量越少,植物開花的時間也越晚。植物種類開花時間主要集中在春夏季,結實的物種數主要集中夏秋季。喬木植物的開花高峰期在 5-6 月,灌木植物在 5-8 月,草本植物在6-8 月。2年的觀察發現,氣候變化造成秋-冬季溫度升高,使得玉山主峰線的秋冬季植物開花延遲結束,並導致春季開花物候有提前現象,此可能造成開花高峰期與授粉者活動高峰期不匹配,並致使植物容易受到晚春降雪的寒害,進而影響植物成功繁育機會。
玉山顯示雪山圈谷的玉山杜鵑積溫起始日可能為冬季最低溫的日子,在基準溫度為4℃有較準確的預測,與玉山杜鵑分布於玉山及雪山所需的熱量累積在統計上有顯著差異,因此兩地區的預測用的熱量閥值需要分別計算再進行預測。
URI: http://hdl.handle.net/11455/95732
Rights: 同意授權瀏覽/列印電子全文服務,2021-07-11起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105033103-1.pdf4.17 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.