Please use this identifier to cite or link to this item:
標題: 含液化柳杉水性聚胺基甲酸酯/環氧樹脂/矽氧有機-無機混成材料之製備及性質
Preparation and Properties of Waterborne Polyurethane/Epoxy/Silica Organic-Inorganic Hybrids Containing Liquefied Cryptomeria japonica
作者: 陳彥君
Yen-Chun Chen
關鍵字: 柳杉;液化木材;有機-無機混成材料;水性環氧樹脂;水性聚胺基甲酸酯樹脂;Cryptomeria japonica;Liquefied wood;Organic-inorganic hybrids;Waterborne epoxy resin;Waterborne polyurethane
引用: 1. 胡銘珊、宋憶青、李文昭(2014)含液化木質素水性聚胺基甲酸酯樹脂之性質。中華林學季刊 47(3):297-310。 2. 楊彝綱、李文昭(2017)環氧樹脂與不同末端基聚胺基甲酸酯樹脂之反應性及其硬化摻合樹脂之性質。林產工業 36(1):37-46。 3. 楊彝綱、陳彥君、李文昭(2017)環氧樹脂與含液化木材聚胺基甲酸酯樹脂之反應性及其硬化摻合樹脂之性質。林業研究季刊 39(2):131-142。 4. Athawale, V. D. and M. A. Kulkarni (2010) Effect of dicarboxylic acids on the performance properties of polyurethane dispersions, J. Appl. Polym. Sci. 117: 572-580. 5. Athawale, V. D. and M. A. Kulkarni (2011) Synthesis and performance evaluation of polyurethane/silica hybrid resins. Pigment & Resin Technology 40: 49-57. 6. Ayres, E., R. L. Orefice and M. I. Yoshida (2007) Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions. Eur. Polym. J. 43: 3510-3521. 7. Bae, C. Y., J. H. Park, E. Y. Kim, Y. S. Kang and B. K. Kim (2011) Organic-inorganic nanocomposite bilayers with triple shape memory effect. J. Mater. Chem. 21(30): 11288-11295. 8. Bao, L. H., Y. J. Lan and S. F. Zhang (2006) Synthesis and properties of waterborne polyurethane dispersions with ions in the soft segments. J. Polym. Res. 13: 507-514. 9. Bechi, D. M., M. A. Luca, M. Martinelli and S. Mitidieri (2013) Organic-inorganic coatings based on epoxidized castor oil with APTES/TIP and TEOS/TIP. Prog. Org. Coat. 76: 736-742. 10. Bonilla, G., M. Martínez and A. M. Mendoza (2006) Ternary interpenetrating networks of polyurethane-poly (methylmethacrylate)-silica: preparation by the sol-gel process and characterization of films. Eur. Polym. J. 42: 2977-2986. 11. Bullermann, J., S. Friebel, T. Salthammer and R. Spohnholz (2013) Novel polyurethane dispersions based on renewable raw materials—Stability studies by variations of DMPA content and degree of neutralisation. Prog. Org. Coat. 76: 609-615. 12. Cakić, S. M., M. Špírková, I. S. Ristić, J. K. B-Simendić, M. M-Cincović and R. Poręba (2013) The waterborne polyurethane dispersions based on polycarbonate diol: Effect of ionic content. Mater. Chem. Phys. 138: 277-285. 13. Cervantes-Uc, J. M., J. I. M. Espinosa, J. V. Cauich-Rodríguez, A. Ávila-Ortega, H. Vázquez-Torres, A. Marcos-Fernández and J. S. Román (2009) TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polym. Degrad. Stab. 94: 1666-1677. 14. Chattopadhyay, D. K. and K. V. S. Raju (2007) Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32: 352-418. 15. Chen, Y. and J. O. Iroh (1999) Synthesis and characterization of polyimide/silica hybrid composites. Chem. Mat. 11: 1218-1222. 16. Chen, S., Y. Tian, L. Chen and T. Hu (2006) Epoxy resin/polyurethane hybrid networks synthesized by frontal polymerization. Chem. Mater. 18: 2159-2163. 17. Chen, S., Q. Wang, X. Pei and T. Wang (2010) Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites. J. Appl. Polym. Sci. 118: 1144-1151. 18. Chen, G., S. Zhou, G. Gu and L. Wu (2005) Acrylic-based polyurethane/silica hybrids prepared by acid-catalyzed sol-gel process: structure and mechanical properties. Macromol. Chem. Phys. 206: 885-892. 19. Chen, J. J., C. F. Zhu, H.T. Deng, Z. N. Qin and Y. Q. Bai (2009) Preparation and characterization of the waterborne polyurethane modified with nanosilica. J. Polym. Res. 16: 375-380. 20. Cherdoud-Chihani, A., M. Mouzali and M. J. M. Abadie (2003) Study of crosslinking acid copolymer/DGEBA systems by FTIR. J. Appl. Polym. Sci. 87: 2033-2051. 21. Dubowik, D. A., M. I. Cook and F. H. Walker (1999) Recent developments in two-pack water-based epoxy coatings. Surf. Coat. Int. 82 (11): 528-535. 22. Eslami, R., R. Bagheri, Y. Hashemzadehb and M. Salehi (2014) Optical and mechanical properties of transparent acrylic based polyurethane nano silica composite coatings. Prog. Org. Coat. 77: 1184-1190. 23. Fang, C., X. Zhou, Q. Yu, S. Liu, D. Guo, R. Yu and J. Hu (2014) Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Prog. Org. Coat. 77: 61-71. 24. Fu, C., X. Hu, Z. Yang, L. Shen and Z. Zheng (2015) Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol-gel process. Prog. Org. Coat. 84: 18-27. 25. Gao, H., G. Hu, K. Liu, L. Wu (2017) Preparation of waterborne dispersions of epoxy resin by ultrasonic-assisted supercritical CO2 nanoemulsification technique. Ultrason. Sonochem. 39: 520-527. 26. Gao, Y., X. P. Wang, M. J. Liu, X. Xia, X. Zhang and D. M. Jia (2014) Effect of montmorillonite on carboxylated styrene butadiene rubber/hindered phenol damping material with improved extraction resistance. Mater. Des. 58: 316-323. 27. Garrett, J., R. Xu, J. Cho and J. Runt (2003) Phase separation of diamine chain-extended poly(urethane) copolymers: FTIR spectroscopy and phase transitions. Polymer 44: 2711-2719. 28. Gašparovič, L., Z. Koreňová and Ľ. Jelemensky (2010) Kinetic study of wood chips decomposition by TGA. Chem. Pap. 64: 174-181. 29. Gireesh, K. B., K. K. Jena, S. Allauddin, K. R. Radhika, R. Narayan and, K. V. S. N. Raju (2010) Structure and thermo-mechanical properties study of polyurethane-urea/glycidoxypropyltrimethoxy silane hybrid coatings. Prog. Org. Coat. 68 (3): 165-172. 30. Goda, H. and C. W. Frank (2001) Fluorescence studies of the hybrid composite of segmented-polyurethane and silica. Chem. Mater. 13(9): 2783-2787. 31. Gu, L., J. H. Ding, S. Liu and H. B. Yu (2016) Incorporation of reactive corrosion inhibitor in waterborne acrylic polyurethane coatings and evaluation of its corrosion performance. Chin. J. Chem. Phys. 29: 271-278. 32. Guoa, Y. H., J. J. Guo, S. C. Li, X. Li, G. S. Wang and Z. Huang (2013) Properties and paper sizing application of waterborne polyurethane emulsions synthesized with TDI and IPDI. Colloid Surf. A-Physicochem. Eng. Asp. 427: 53-61. 33. Gurunathan, T. and J. S. Chung (2017) Synthesis of aminosilane crosslinked cationomeric waterborne polyurethane nanocomposites and its physicochemical properties. Colloid Surf. A-Physicochem. Eng. Asp. 522: 124-132. 34. Hassanajili, S., M. Khademi and P. Keshavarz (2014) Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes. J. Membr. Sci. 453: 369-383. 35. Heck, C. A., J. H. Z. dos Santos, C. R. Wolf (2015) Waterborne polyurethane: the effect of the addition or in situ formation of silica on mechanical properties and adhesion. Int. J. Adhes. Adhes. 58: 13-20. 36. Hesabi, Z. R., H. R. Hafizpour and A. Simchi (2007) An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater. Sci. Eng. A 454: 89-98. 37. Hon, D. N. S. (1987) Cellulosic adhesive. In “Adhesive from Renewable Resource” R.W. Hemingway, A. Conner and S.J. Branham (Ed), American Chemical Society, Washington DC, pp. 289-304. 38. Hood, M. A., C. S. Gold, F. L. Beyer, J. M. Sands and C. Y. Li (2013) Extraordinarily high plastic deformation in polyurethane/silica nanoparticle nanocomposites with low filler concentrations. Polymer 54: 6510-6515. 39. Hwang, H. D. and H. J. Kim (2011) Enhanced thermal and surface properties of waterborne UV-curable polycarbonate-based polyurethane (meth) acrylate dispersion by incorporation of polydimethylsiloxane. React. Funct. Polym. 71 (6): 655-665. 40. Jayakannan, M. and S. Ramakrishnan (2000) Effect of branching on the thermal properties of novel branched poly(4-ethyleneoxy benzoate). J. Polym. Sci. Pol. Chem. 38: 261-268. 41. Jena, K. K., S. Sahoo, R, Narayan, T. M. Aminabhavic and K. V. S. N. Raju (2011) Novel hyperbranched waterborne polyurethane-urea/silica hybrid coatings and their characterizations. Polym. Int. 60: 1504-1513. 42. Jeon, H. T., M. K. Jang, B. K. Kim and K. H. Kim (2007) Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloid Surf. A-Physicochem. Eng. Asp. 302: 559-567. 43. Jhon, Y. K., I. W. Cheong and J. H. Kim (2001) Chain extension study of aqueous polyurethane dispersions. Colloid Surf. A-Physicochem. Eng. Asp. 179: 71-78. 44. Jiang, X., J. Li, M. Ding, H. Tan, Q. Ling, Y. Zhong and Q. Fu (2007) Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly (caprolactone) and poly(ethylene glycol) as soft segment. Eur. Polym. J. 43: 1838-1846. 45. Juang, D. F., C. H. Lee, W. C. Chen and C. S. Yuan (2010) Do the VOCs that evaporate from a heavily polluted river threaten the health of riparian residents. Sci. Total Environ. 408: 4524-4531. 46. Kim, Y. S., J. S. Lee, Q. Ji and J. E. McGrath (2002) Surface properties of fluorinated oxetane polyol modified polyurethane block copolymers. Polymer 43(25): 7161-7170. 47. Kim, B. K., J. W. Seo and H. M. Jeong (2003) Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 39 (1): 85-91. 48. Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53: 617-622. 49. Kurimoto, Y., M. Takeda, A. Koizumi, S Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74: 151-157. 50. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass Bioenerg. 21: 381-390. 51. Kurimoto, Y., M. Takeda, A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol. 77: 33-40. 52. Lai, X., Y. Shen, L. Wang and Z. Li (2011) Preparation and performance of waterborne polyurethane/nano silica hybrid materials. Polym.-Plast. Technol. Eng. 50: 740-747. 53. Lai, X., P. Song and L. Wang (2017) Preparation and properties of epoxy-modified waterborne polyurethane/polyacrylate composite emulsion with the action of polmerizable emulsifier. J. Appl. Sci. Eng. 20: 87-94. 54. Lai, S. M., C. K. Wang and H. F. Shen (2005) Properties and preparation of thermoplastic polyurethane/silica hybrid using sol-gel process. J. Appl. Polym. Sci. 97: 1316-1325. 55. Lee, S. K. and B. K. Kim (2009) High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. J. Colloid Interf. Sci. 336: 208-214. 56. Lee, W. J. and M. S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 109: 23-31. 57. Lee, S. K., S. H. Yoon, I. Chung, A. Hartwig and B. K. Kim (2011) Waterborne polyurethane nanocomposites having shape memory effects. J. Polym. Sci. A: Polym. Chem. 49 (3): 634-641. 58. Lesot, S. P., S. Chapuis, J. P. Bayle, J. Rault, E. Lafontaine, A. Camperod and P. Judeinstein (1998) Structural-dynamical relationship in silica PEG hybrid gels. J Mat. Chem. 8:147-151. 59. Li, M. S., C. C. M. Ma, M. L. Lin and F. C. Chang (1997) Chemical reactions occurring during the preparation of polycarbonate-epoxy blends. Polymer 38: 4903-4913. 60. Li, Y. and S. Mao (1996) Study on the properties and application of epoxy resin/polyurethane semi‐interpenetrating polymer networks. J. Appl. Polym. Sci. 61: 2059-2063. 61. Lin, L., Y. Yao and N. Shiraishi (2001) Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. Holzforschung 55: 617-624. 62. Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (2004) Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydr. Polym. 57: 123-129. 63. Liu, Y., Z. Du, C. Zhang, C. Li and H. Li (2007) Curing behavior and thermal properties of multifunctional epoxy resin with methylhexahydrophthalic anhydride. J. Appl. Polym. Sci. 103: 2041-2048. 64. Liu, M., G. Song, J. Yi and Y. Xu (2013) Damping analysis of polyurethane/polyacrylate interpenetrating polymer network composites filled with graphite particles. Polym. Compos. 34: 288-292. 65. Luo, K., S. Zhou, L. Wu and G. Gu (2008) Dispersion and functionalization of nonaqueous synthesized zirconia nanocrystals via attachment of silane coupling agents. Langmuir 24: 11497-11505. 66. Lv, W., R. M. Wang, Y. F. He and H. F. Zhang (2008) Preparation and application of smart coatings. Prog. Chem. 20: 351-360. 67. Lv, X., Z. Huang, C. Huang, M. Shi, G. Gao and Q. Gao (2016) Damping properties and the morphology analysis of the polyurethane/epoxy continuous gradient IPN materials. Compos. Pt. B-Eng. 88: 139-149. 68. Lv, Z. P., X. N. Li and X. Yu (2012) The effect of chain extension method on the properties of polyurethane/SiO2 composites. Mater. Des. 35: 358-362. 69. Matějka, L., O. Dukh, J. Brus, W. J. S. Jr and B. Meissner, (2000) Cage-like structure formation during sol-gel polymerization of glycidyloxypropyl- trimethoxysilane. J. Non-Cryst. Solids 270: 34-47. 70. Meera, K. M. S., R. M. Sankar, S. N Jaisankar and A. B. Mandal (2013) Physicochemical studies on polyurethane/siloxane cross-linked films for hydrophobic surfaces by the sol-gel process. J. Phys. Chem. B 117: 2682-2694. 71. Meure, S., D. Y. Wu and S. A. Furman (2010) FTIR study of bonding between a thermoplastic healing agent and a mendable epoxy resin. Vib. Spectrosc. 52: 10-15. 72. Mily, E., A. Gonzalez, J. J. Iruin, L. Irusta and M. J. Fernandez-Berridi (2010) Silica nanoparticles obtained by microwave assisted sol-gel process: multivariate analysis of the size and conversion dependence. J. Sol-Gel Sci. Tech. 53(3): 667-672. 73. Mohseni, M., S. Bastani and A. Jannesari (2014) Influence of silane structure on curing behavior and surface properties of sol-gel based UV-curable organic-inorganic hybrid coatings. Prog. Org. Coat. 77: 1191-1199. 74. Nanda, A. K. and D. A. Wicks (2006) The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process. Polymer 47: 1805-1811. 75. Nanda, A. K., D. A. Wicks, S. A. Madbouly and J. U. Otaigbe (2006) Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules 39(20): 7037-7043. 76. Nelson, A. M. and T. E. Long (2014) Synthesis, properties, and applications of ion-containing polyurethane segmented copolymers. Macromol. Chem. Phys. 215: 2161-2174. 77. Noble, K. L (1997) Waterborne polyurethane. Prog. Org. Coat. 32: 131-136. 78. Nuraini, L., E. Triwulandari, M. Ghozali, M. Hanafi and Jumina (2017) Synthesis of polyurethane/silica modified epoxy polymer based on 1,3-propanediol for coating application. Indones. J. Chem. 17 (3): 477-484. 79. Odian, G. (2004) Principles of Polymerization. 4nd ed. John Wiley & Sons, Inc., Hoboken, New Jersey. pp. 40-44. 80. Park, N. H., J. W. Lee and K. D. Suh (2002) In situ polyurethane/silica composite formation via a sol-gel process. J Appl. Polym. Sci. 84: 2327-2334. 81. Pérez-Limiñana, M. A., F. Arán-Aís, A. M. Torró-Palau, A. C. Orgilés-Barceló and J. M. Martín-Martínez (2005) Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int. J. Adhes. Adhes. 25: 507-517. 82. Patel, A., C. Patel, M. G. Patel, M. Patel and A. Dighe (2010) Fatty acid modified polyurethane dispersion for surface coatings: effect of fatty acid content and ionic content. Prog. Org. Coat. 67 (3): 255-263. 83. Petrović, Z. S. and J. Ferguson (1991) Polyurethane elastomers. Prog. Polym. Sci. 16: 695-836. 84. Rahman, M. M. and H. D. Kim (2006) Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I). J. Appl. Polym. Sci. 102: 5684-5691. 85. Rahman, M. M., A. Hasneen, N. J. Jo, H. I. Kim and W. K. Lee (2011) Properties of waterborne polyurethane adhesives with aliphatic and aromatic diisocyanates. J. Adhes. Sci. Technol. 25: 2051-2062. 86. Rodrigues, S. N., I. Fernandes, I. M. Martins, V. G. Mata, F. Barreiro and A. E. Rodrigues (2008) Microencapsulation of limonene for textile application. Ind. Eng. Chem. Res. 47: 4142-4147. 87. Salih, A. M., M. B. Ahmad, N. A. Ibrahim, K. Z. H. M. Dahlan, R. Tajau, M. H. Mahmood and W. M. Z. W. Yunus (2015) Synthesis of radiation curable palm oil-based epoxy acrylate: NMR and FTIR spectroscopic investigations. Molecules 20: 14191-14211. 88. Sánchez-Soto, M., P. Pagés, T. Lacorte, K. Briceño and F. Carrasco (2007) Curing FTIR study and mechanical characterization of glass bead filled trifunctional epoxy composites. Compos. Sci. Technol. 67: 1974-1985. 89. Sandler, S., W. Karo, J. Bonesteel and E. Pearce (1998) Polymer synthesis and characterization. Academic Press, San Diego, pp. 61-67. 90. Santamaria-Echart, A., A. Arbelaiz, A. Saralegi, B. Fernández-d’Arlas, A. Eceiza and M. A. Corcuera (2015) Relationship between reagents molar ratio and dispersion stability and film properties of waterborne polyurethanes. Colloid. Surf. A-Physicochem. Eng. Asp. 482: 554-561. 91. Santamaria-Echart, A., I. Fernandes, A. Saralegi, M. R. P. F. N. Costa, F. Barreiro, M. A. Corcuera and A. Eceiza (2016) Synthesis of waterborne polyurethane-urea dispersions with chain extension step in homogeneous and heterogeneous media. J. Colloid Interface Sci. 476: 184-192. 92. Saralegi, A., L. Rueda, B. Fernandez-d’Arlas, I. Mondragon, A. Eceiza and M. A. Corcuera, (2012) Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym. Int. 62: 106-115. 93. Sardon, H., L. Irusta, M. J. Fernández-Berridi, M. Lansalot and E. Bourgeat-Lami (2010) Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Polymer 51: 5051-5057. 94. Sardon, H., L. Irusta, R. H. Aguirresarobe, M. J. Fernández-Berridi (2014) Polymer/silica nanohybrids by means of tetraethoxysilane sol-gel condensation onto waterborne polyurethane particles. Prog. Org. Coat. 77: 1436-1442. 95. Seo, J. W. and B. K. Kim (2005) Preparetion and properties of waterborne polyurethane/nanosilica composites. Polym. Bull. 54: 123-128. 96. Serkis, M., M. Špírková, J. Hodan and J. Kredatusová (2016) Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties. Prog. Org. Coat. 101: 342-349. 97. Strezov, V., B. Moghtaderi and J. Lucas (2003) Thermal study of decomposition of selected biomass samples. J. Therm. Anal. Calorim. 72: 1041-1048. 98. Subramani, S., J. M. Lee, J. Y. Lee and J. H. Kim (2007) Synthesis and properties of room temperature curable trimethoxysilane-terminated polyurethane and their dispersions. Polym. Adv. Technol. 18: 601-609. 99. Tan, J. H., X. P. Wang, J. J. Tai, Y. F. Luo and D. M. Jia (2012) Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks. Express Polym. Lett. 6: 588-600. 100. Tien, Y. I. and K. H. Wei (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42 (7): 3213-3221. 101. Vidinejevs, S., A. N. Aniskevich, A. Gregor, M. Sjöberg and G. Alvarez (2012) Smart polymeric coatings for damage visualization in substrate materials. J. Intell. Mater. Syst. Struct. 23: 1371-1377. 102. Wang, L., Y. Shen, X. J. Lai and Z. Li (2010) Synthesis and properties of crosslinked waterborne polyurethane. J. Polym. Res. 18: 469-476. 103. Wang, T. L., C. H. Yang and Y. T. Shieh (2009) Synthesis and properties of conducting organic/inorganic polyurethane hybrids. Eur. Polym. J. 45: 387-397. 104. Wu, C. L., M. Q. Zhang, M. Z. Rong and K. Friedrich (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compo. Sci. Technol. 62: 1327-1340. 105. Wu, G., Z. Kong, J. Chen, S. Huo and G. Liu (2014) Preparation and properties of waterborne polyurethane/epoxy resin composite coating from anionic terpene-based polyol dispersion. Prog. Org. Coat. 77: 315- 321. 106. Wu, X., Z. Fan, X. Zhu, K. H. Jung, P. Ohman-Strickland, C. P. Weisel and P. J. Lioy (2012) Exposures to volatile organic compounds (VOCs) and associated health risks of socio-economically disadvantaged population in a “hot spot” in Camden, New Jersey. Atmos. Environ. 57: 72-79. 107. Wu, K., L. Song, Y. Hu, H. Lu, B. K. Kandola and E. Kandare (2009) Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog. Org. Coat. 65: 490-497. 108. Wu, Z. F., H. Wang, X. Y. Tian, P. Cui, X. Ding and X. Z. Ye (2014a) The effects of polydimethylsiloxane on transparent and hydrophobic waterborne polyurethane coatings containing polydimethylsiloxane. Phys. Chem. Chem. Phys. 16: 6787-6794. 109. Wu, Z., H Wang, X. Tian, M. Xue, X. Ding, X. Ye and Z. Cui (2014b) Surface and mechanical properties of hydrophobic silica contained hybrid films of waterborne polyurethane and fluorinated polymethacrylate. Polymer 55: 187-194. 110. Xia, Y. and R. C. Larock (2011) Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process. Macromol. Rapid Commun. 32 (17): 1331-1337. 111. Xu, J., J. Jiang, C. Y. Hse and T. F. Shupe (2014) Preparation of Polyurethane Foams Using Fractionated Products in Liquefied Wood. J. Appl. Polym. Sci. 131: 40096 (1-7). 112. Yamada, T., M. Aratani, S. Kubo and H. Ono (2007) Chemical analysis of the product in acid-catalyzed solvolysis of cellulose using polyethylene glycol and ethylene carbonate. J. Wood Sci. 53: 487-493. 113. Yamada, T. and H. Ono (2001) Characteristic of the products resulting from ethylene glycol liquefaction cellulose. J. Wood Sci. 47: 458-464. 114. Yano, S., K. Iwata and K. Kurita (1998) Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process. Mater. Sci. Eng. C. 6: 75-90. 115. Ye, Y. S., J. Rick and B. J. Hwang (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymer 4: 913-963. 116. Yeh, J. M., C. T. Yao and C. F. Hsieh (2008) Preparation and properties of amino-terminated anionic waterborne-polyurethane-silica hybrid materials through a sol-gel process in the absence of an external catalyst. Eur. Polym. J. 44: 2777-2783. 117. Yen, M. S., P. Y. Chen and H. C. Tsai, (2003) Synthesis, properties, and dyeing application of nonionic waterborne polyurethanes with different chain length of ethyldiamines as the chain extender. J. Appl. Polym. Sci. 90: 2824-2833. 118. Yilgör, I., E. Yilgör and G. L. Wilkes (2015) Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 58: A1-A36. 119. Yoon, S. C., Y. K. Sung and B. D. Ratner (1990) Surface and bulk structure of segmented poly(ether urethanes) with perfluoro chain extenders. 4. role of hydrogen bonding on thermal transitions. Macromolecules 23 (20): 4351-4356. 120. Zhai, L., R. Liu, F. Peng, Y. Zhang, K. Zhong, J. Yuan and Y. Lan (2013) Synthesis and characterization of nanosilica/waterborne polyurethane end-capped by alkoxysilane via a sol-gel process. J. Appl. Polym. Sci. 128: 1715-1724. 121. Zhang, S., Z. Chen, M. Guo, J. Zhao and X. Liu (2014) Waterborne UV-curable polycarbonate polyurethane nanocomposites based on polydimethylsiloxane and colloidal silica with enhanced mechanical and surface properties. RSC Adv. 4: 30938-30947. 122. Zhang, D., S. Wei, C. Kaila, X. Su, J. Wu, A. B. Karki, D. P. Young and Z. H. Guo (2010) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2: 917-919. 123. Zhang, L. H., X. H. Yao, S. G. Zang and Q. Han (2015) Temperature and strain rate dependent tensile behavior of a transparent polyurethane interlayer. Mater. Des. 65: 1181-1188. 124. Zhao, C. X. and W. D. Zhang (2008) Preparation of waterborne polyurethane nanocomposites: Polymerization from functionalized hydroxyapatite. Eur. Polym. J. 44: 1988-1995. 125. Zhou, X., C. Fang, W. Lei, J. Su, L. Li and Y. Li (2017) Thermal and crystalline properties of waterborne polyurethane by in situ water reaction process and the potential application as biomaterial. Prog. Org. Coat. 104: 1-10. 126. Zhou, H., H. Wang, X. Tian, K. Zheng and Q. Cheng (2014) Effect of 3-aminopropyltriethoxysilane on polycarbonate based waterborne polyurethane transparent coatings. Prog. Org. Coat. 77: 1073-1078. 127. Zhou, S., L. Wu, J. Sun and W. Shen (2002) The change of the properties of acrylic-based polyurethanevia addition of nano-silica. Prog. Org. Coat. 45: 33-42. 128. Zia, K. M., S. Anjum, M. Zuber, M. Mujahid and T. Jamil (2014) Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int. J. Biol. Macromol. 66: 26-32. 129. Zou, X., T. Qin, L. Huang, X. Zhang, Z. Yang and Y. Wang (2009) Mechanisms and main regularities of biomass liquefaction with alcohol solvents. Energ. Fuel. 23: 5213-5218. 130. Zou, H., S. Wu and J. Shen (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108 (9): 3893-3957.
本研究將柳杉(Cryptomeria japonica Don.;Japanese cedar)木材以聚乙二醇/丙三醇混合液為溶劑、硫酸為催化劑進行液化處理得液化木材(Liquefied wood;LW)。聚四甲基醚二醇(Polytetramethylene ether glycol;PTMG)及OH基莫耳比1/1之PTMG/LW分別與異弗爾酮二異氰酸酯(Isophorone diisocyanate;IPDI)透過預聚合法製備兩種系列水性聚胺基甲酸酯樹脂(Polyurethane resin;PU),分別為WPU(Waterborne PU)及LWPU(LW-contained waterborne PU)系列,探討鏈延長劑乙二胺(Ethylenediamine;EDA)添加量對所合成水性PU樹脂性質之影響。隨後將水性PU樹脂與水性環氧樹脂(Waterborne epoxy resin;Waterborne ER)以不同重量比混合,探討水性ER樹脂添加比例對PU/ER摻合樹脂性質之影響。另在水性PU樹脂合成過程導入3-(三乙氧矽基)丙胺(3-Aminopropyltriethoxysilane;APTES)進行改質處理使形成含有矽氧烷末端之APU樹脂,並在PU/ER及APU/ER摻合樹脂中加入四乙基矽氧烷(Tetraethoxysilane;TEOS),探討無機矽氧高分子含量對PU/ER/矽氧混成樹脂薄膜性質之影響。由試驗結果得知,LWPU樹脂液之粒徑大於WPU,而隨鏈延長劑添加比例增加,所合成水性PU樹脂之分子量降低。WPU及LWPU兩種系列水性PU樹脂比較,WPU樹脂薄膜浸水膨潤係數較小,重量保留率較高,拉伸強度、破壞伸長率及破壞能量較大。而隨鏈延長劑添加比例增加,樹脂薄膜之膨潤係數增大,重量保留率降低,拉伸強度及破壞伸長率減小。DMA分析顯示添加LW可提高PU樹脂中軟鏈段之剛性,提高鏈延長劑添加比例可降低結晶區的熱活動性。TGA分析顯示,分子鏈長度對PU樹脂熱安定性之影響效應大於分子結構。PU/ER摻合樹脂隨ER樹脂比例提高,摻合樹脂薄膜浸水時之膨潤係數下降,重量保留率提高,其中WPU/ER樹脂薄膜之拉伸強度及破壞伸長率下降,而LWPU/ER樹脂之拉伸強度及模數則提高。DSC及DMA分析顯示,ER樹脂所形成的網狀結構會限制PU分子鏈之熱活動。TGA分析顯示,PU/ER互穿網狀高分子結構可提高PU樹脂的熱抵抗性。TEOS可在PU/ER摻合樹脂中發生水解-縮合反應形成PU/ER/矽氧有機-無機混成樹脂薄膜,其中APU/ER樹脂可與TEOS反應而形成共聚合之矽氧結構。此共聚合矽氧結構可改善APU/ER混成樹脂薄膜之耐水性、耐溶劑、機械性質及熱抵抗性,且隨矽氧比例增加,對性質改善效果提高。

In this study, wood of Cryptomeria japonica was liquefied in polyethylene glycol/glycerol mixture with sulfuric acid as a catalyst to obtain liquefied wood (LW). Two series of waterborne polyurethane resin (PU), named WPU and LWPU, were prepared by reacting polytetramethylene ether glycol (PTMG) and a mixture of PTMG/LW (1/1 by OH group molar ratio) with isophorone diisocyanate (IPDI), respectively, via a prepolymerization method. The effect of the addition rate of the chain extender of ethylenediamine (EDA) on the properties of waterborne PU resin was investigated. Then waterborne PUs were mixed with the waterborne epoxy resin (ER) with different weight ratios and the influence of the amount of WER on the properties of PU/ER blended resin was investigated. In addition, an APU resin that contains a siloxane-terminated structure was prepared by introducing 3-aminopropyl- triethoxysilane (APTES) into the WPU during the synthesis. Tetraethoxysilane (TEOS) was added to PU/ER and APU/ER blended resins to investigate the effect of the content of inorganic silica on the properties of PU/ER/silica hybrid resin film. The experimental results showed that the average particle size of LWPU suspensions is larger than that of WPU suspensions. Increasing the chain extender contents, the average molecular weight of waterborne PU resin decreased. Compared with the two types of waterborne PU resin, WPU films have a smaller swelling coefficient and higher weight retention after water immersion, higher tensile strength and elongation at breaking, and greater destruction energy. With the chain extender contents increased, the swelling coefficient increased, the weight retention rate decreased, and the tensile strength and fracture elongation decreased. DMA analysis shows that the addition of LW can increase the rigidity of the soft segment in the PU resin. Increasing the chain extender contents can reduce the thermal activity of the crystalline region. TGA analysis indicates that the effect of molecular chain length on the thermal stability of PU resin is greater than that of molecular structure. Increasing the weight ratio of ER in PU/ER blended resin, the swelling coefficient of the resin film decreased and the weight retention increased after water immersion. However, the tensile strength and the elongation at breaking decreased for WPU/ER resin films but the tensile strength and modulus increased for LWPU/ER. DSC and DMA analysis showed that the thermal activity of the molecular chain of PU was restricted by the network structure of the ER resin. TGA analysis showed that the PU/ER interpenetrating network polymer structure could improve the thermal resistance of PU resin. TEOS could undergo the hydrolysis-condensation reactions in PU/ER blended resins to form PU/ER/silica organic-inorganic hybrid resin films. APU/ER blended resins could react with TEOS to form a copolymerized silica structures. The water resistance, solvent resistance, mechanical properties, and thermal resistance of APU/ER hybrid resin films could be improved by the co-polymerized silica structure. As the ratio of silica content increased, the effect of improving the properties was enhanced.
Rights: 同意授權瀏覽/列印電子全文服務,2021-07-23起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105033209-1.pdf3.73 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.