Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95758
標題: 定向竹重組板材製造及其性能評估
Manufacturing of Oriented Bamboo Scrimber Boards and Their Performance Evaluation
作者: 莊閔傑
Min-Jay Chung
關鍵字: 孟宗竹;桂竹;相思樹皮;定向竹重組板材;蒸汽熱處理;去皮處理;單寧膠;直交式集成定向竹重組板材;機械性質;尺寸安定性;Phyllostachys pubescens;P. makinoi;Acacia bark;oriented bamboo scrimber board (OBSB);steam-heating treatment (SHT);epidermal peeling treatment (EPT);tannin glue;cross laminated-oriented bamboo scrimber board (CL-OBSB);mechanical properties;dimensional stability
引用: 1. 吳東霖、陳載永、吳志鴻(2011)竹材加工廢料應用在生物可分解型塑膠複合材製備之研究。中華林學季刊。44(4):613–626。 2. 呂知諺(2014)探討熱處理對三種國產人工造林木化學性質之影響。國立宜蘭大學碩士論文。122頁。 3. 呂錦明(2001)竹林之培育及經營管理。行政院農業委員會林業試驗所。臺北,臺灣。204頁。 4. 李文昭、劉正字(1995a)農林廢料製造木材膠合劑之研究(Ⅰ)–樹皮及稻殼、蔗渣之化學組成分分析。林產工業。14(2):102‒119。 5. 李文昭、劉正字(1995b)農林廢料製造木材膠合劑之研究(Ⅱ)–不同抽出方法之抽出效能比較。林產工業。14(3):81‒100。 6. 李文昭、劉正字(1996)農林廢料製造木材膠合劑之研究(IV)酚–相思樹樹皮抽出物-甲醛共聚合膠劑之應用。林產工業。15(2):251‒270。 7. 李文昭、藍偉銓(2006)全竹材製作竹集成樑。林業研究季刊。28(3):83‒90。 8. 李志璇(2012)三種熱處理介質對孟宗竹基本性質之影響。國立中興大學森林學研究所碩士論文。104頁。 9. 李佳如、楊德新(2010)應用非破壞檢測技術評估杉木集成元之抗彎性質。林業研究季刊。32(4):45–60。 10. 卓志隆、李俊威(2014)熱處理對孟宗竹材性質之影響(Ⅰ)‒物理性質及耐腐朽性。林產工業。33(2):79‒88。 11. 林志憲、李佳如、楊德新(2015)直交集成柳杉地板之物理與機械性質評估。林產工業。34(1):1–10。 12. 陳育涵、葉汀峰、林宮民、張上鎮(2013)相思樹心材抽出物含浸實木耐久性之改善功效。中華林學季刊。46(3):377-390。 13. 唐讓雷(1989)竹材之強度。林產工業。8(3):64-78。 14. 黃耀富、林正榮(1983)台灣赤楊及木油桐為原料之粒片板研製。林產工業。2(2):46–63。 15. 黃耀富、森稔(1986)定向粒片板之研製(一)。林產工業。5(2):1–10。 16. 楊德新、邱志明、郭博文、莊鴻濱、林振榮(2005)超音波檢測技術評估商用地板材質之研究。台灣林業科學。20(2):113–21。 17. 賴志恆(2004)台灣杉疏伐木研製長薄片定向粒片板性質之探討。國立臺灣大學森林學研究所碩士論文。p. 1‒73。 18. 劉正字(1984)木器用膠合劑種類與性質。林產工業。3(1):92–98。 19. 劉正字、李文昭、王恩華(1992)竹木材積層膠合製作高級製品及結構建材(Ⅰ)-竹材基本物理機械性質及膠合性之探討。林產工業 11(1):19‒29。 20. 劉正字、李文昭、王恩華(1993)竹材積層膠合製作高級製品-數種竹材積層膠合用膠合劑之特性及其膠合強度變化之探討。林產工業。12(3):51–64。 21. 蕭念之(2014)改善太平洋鐵木心材水溶性抽出物釋出之方法及其處理材之耐久性。國立臺灣大學森林環境暨資源學研究所碩士論文。100頁。 22. 謝榮生、吳順昭、王秀華(1990)單桿竹與叢生竹之組織構造研究。竹材綜合利用與加工。林產工業叢書。11:1-13。 23. Abdul Khalil H.P.S., Bhata I.U.H., Jawaid M, Zaidon A., Hermawan D. and Hadi Y.S. (2012) Bamboo fibre reinforced biocomposites: a review. Material Design 42: 353–368. 24. Adams R.P. (2007) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Pub Corp:Carol Stream, IL. 25. ASTM D 1037 (2006) Evaluating the properties of wood-based fiber and particleboard material. 26. ASTM D 1107-56 (1983) Standard test method for alcohol-benzene solubility of wood. American Society for Testing and Materials, Philadelphia. 27. ASTM D 1104-56 (1978) Standard test method for holocellulose in wood. American Society for Testing and Materials, Philadelphia. 28. ASTM D 1103-60 (1978) Standard test method for alpha-cellulose in wood. American Society for Testing and Materials, Philadelphia. 29. ASTM D 1106-56 (1977) Standard test method for lignin in wood. American Society for Testing and Materials, Philadelphia. 30. ASTM D 1107-96 (2001) Standard test method for acid-insoluble lignin in wood. American Society for Testing and Materials, West Conshohocken. 31. ASTM D 1102-84 (2001) Standard test method for ash in wood. American Society for Testing and Materials, West Conshohocken. 32. Bal B.C. and Bektaş Í. (2012) The effects of wood species, load direction, and adhesives on bending properties of laminated veneer lumber. BioResources 7: 3104–3112. 33. Bhuiyan M.T.R., Hirai N. and Sobue N. (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science 46: 431-436. 34. Brito J.O., Silva F.G., Leão M.M. and Almeida G. (2008) Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology 99: 8545–8548. 35. Boonstra M.J. and Tjeerdsma B. (2006) Chemical analysis of heat treated softwoods. Holz Roh Werkst 64: 204–211. 36. Burhanettin U. (2005) Bonding strength and dimentional stability of laminated veneer lumbers manufactured by using different adhesives after the steam test. International Journal of Adhesion & Adhesives 25: 395–403. 37. Candelier K., Dumarcay S., Pétrissans A., Desharnais L., Gérardin P., Pétrissans M. (2013) Comparison of chemical composition and decay durability of heat treated wood cured under different atmospheres: nitrogen or vacuum. Polymer Degradation and Stability 98: 677–681. 38. Chang S.T. and Chang H.T. (2001) Comparisons of the photostability of esterified wood. Polymer Degradation and Stability 71:261-266. 39. Chang S.T. and Yeh T.F. (2000) Effects of alkali pretreatment on surface properties and green color conservation of moso bamboo (Phyllostachys pubescens Mazel). Holzforschung 54: 487–491. 40. Chang H.T., Yeh T.F. and Chang S.T. (2002). Comparisons of chemical characteristic variations for photodegraded softwood and hardwood with/without polyurethane clear coatings. Polymer Degradation and Stability 77: 129–135. 41. Cheng D., Jiang S. and Zhang Q. (2013) Effect of hydrothermal treatment with different aqueous solutions on the mold resistance of moso bamboo with chemical and FTIR analysis. BioResources 8: 371‒382. 42. Chung M.J., Wu J.H. and Chang S.T. (2005) Green colour protection of makino bamboo (Phyllostachys makinoi) treated with ammoniacal copper quaternary and copper azole preservatives. Polymer Degradation and Stability 90: 167–172. 43. Çolak S., Aydin Í., Demirkir C. and Çolakoglu G. (2004) Some technological properties of laminated veneer lumber manufactured from pine (Pinus sylvestris L.) veneers with melamine added-UF resins. Turkish Journal of Agriculture and Forestry 28: 109–113. 44. Dalton L.K. (1950) Tannin-formaldehyde resins as adhesives for wood. Journal of Application Science 1: 54‒70. 45. Evans P.D., Owen N.L., Schmid S. and Webster R.D. (2002) Weathering and photostability of benzoylated wood. Polymer Degradation and Stability 76: 291–303. 46. Follrich J., Muller U. and Gindl W. (2006) Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst) and a thermoplastic polymer. Holz als Roh- und Werkstoff 64: 373-376. 47. Geng Y. and Simonsen K.L.J. (2004) Effects of a new compatibilizer system on the flexural properties of wood–polyethylene composites. Journal of Applied Polymer Science 91: 3667–3672. 48. George T. (1991) Science and technology of wood. Van Nostrand Reinhold. New York, USA. p. 213 – 233. 49. Gsell D., Feltrin G., Schubert S., Steiger R. and Motavalli M. (2007) Cross laminated timber plates: Evaluation and verification of homogenized elastic properties. Journal of Structural Engineering 133: 132–138. 50. Gülzow A., Richter K. and Steiger R. (2011) Influence of wood moisture content on bending and shear stiffness of cross laminated timber panels. European Journal of Wood and Wood Products 69: 193–197. 51. Gunduz G. and Aydemir D. (2009) Some physical properties of heated Hornbeam (Carpinus betulus L.) wood. Drying Technology 27: 714–720. 52. Hakkou M., Pe´trissans M., Zoulalian A. and Ge´rardin P. (2005) Investigation of wood wettability changes during thermal treatment on the basis of chemical analysis. Polymer Degradation and Stability 89: 1–5. 53. Hisham H.N., Othman S., Rokiah H., Latif M.A., Ani1 S. and Tamizi1 M.M. (2006) Characterization of bamboo Gigantochloa scortechinii at different ages. Journal of Tropical Forest Science 18: 236–242. 54. Hon N.S. (2001) Wood and Cellulosic Chemistry. Marcel Dekker, Inc., New York. p. 1–243. 55. Hsieh C.Y. and Chang S.T. (2010) Antioxidant activities and xanthine oxidase inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and branches. Journal of Agricultural and Food Chemistry 58: 1578–1583. 56. Jayashree K.K.P., Nagaveni H.C. and Mahadevan K.M. (2011) Fungal resistance of rubber wood modified by fatty acid chlorides. International Biodeterioration & Biodegradation 65: 890–5. 57. Johan V., Enquist B., Petersson H. and Alsmarker T. (2009) Experimental study of cross-laminated timber wall panels. European Journal of Wood and Wood Products 67: 211–218. 58. Karacabeyli E. and Douglas Bra. (2013) CLT Handbook: Cross-Laminated Timber: US Edition. (Special publication, ISSN 1925-0495; SP-529E) FP Innovations and Binational Softwood Lumber Council. 59. Kartal S.N., Hwang W.J. and Imamura Y. (2008) Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood. Journal of Material Processing Technology 198: 234–240. 60. Kim S. and Kim H.J. (2003) Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. Journal of Adhesion Science and Technology 17: 1369‒1383. 61. Kocaefe D., Poncsak S., Tang J. and Bouazara M. (2010) Effect of heat treatment on the mechanical properties of North American Jack Pine: thermogravimetric study. Journal of Material Science 45: 681–687. 62. Kojima Y. and Suzuki S. (2011) Evaluating the durability of wood-based panels using internal bond strength results from accelerated aging treatments. Journal of Wood Science 57:7–13. 63. Korkut S. and Bektas I. (2008) The effects of heat treatment on physical properties of Uludag fir (Abies bornmuelleriana Mattf.) and Scots pine (Pinus sylvestris L.) wood. Forest Product Journal 58: 95–99. 64. Kujala T.S., Loponen J.M., Klika K.D. and Pihlaja K. (2000) Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry 48: 5338–5342. 65. Kubojima Y., Okano T. and Ohta M. (2000) Bending strength and toughness of heat-treated wood. Journal of Wood Science 46: 8–15. 66. Lakkad S.C. and Patel J.M. (1981) Mechanical properties of bamboo, a natural composite. Fibre Science and Technology 14: 319–322. 67. Lee A.W.C., Bai X. and Bangi A.P. (1998) Selected properties of laboratory-made laminated bamboo lumber. Holzforschung 52: 207–210. 68. Lee A.W.C., Bai X. and Peralta P.N. (1996) Physical and mechanical properties of strandboard made from moso bamboo. Forest Products Journal 46: 84–88. 69. Lee A.W.C. and Liu Y. (2003) Selected physical properties of commercial bamboo flooring. Forest Products Journal53: 23–26. 70. Lee C.H., Chung M.J., Lin C.H. and Yang T.H. (2012) Effects of layered structure on the physical and mechanical properties of laminated moso bamboo (Phyllosachys edulis) flooring. Construction and Building Materials 28: 31–35. 71. Liese W. (1987) Research on bamboo. Wood Science and Technology 21:189–209. 72. Li X.B., Shupe T.F., Peter G.F., Hse C.Y. and Eberhardt T.L. (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. Journal of Tropical Forest Science 19: 6–12. 73. Liu Z. and Fei B. (2013) Chapter 1: Characteristics of moso bamboo with chemical pretreatment. licenseeInTech (http://dx.doi.org/10.5772/55379). 74. Lin C.J., Tsai M.J. and Wang S.Y. (2006) Nondestructive evaluation techniques for assessing dynamic modulus of elasticity of moso bamboo (Phyllosachys edulis) lamina. Journal of Wood Science 52: 342–347. 75. Lin H.C. and Huang J.C (2001) Apply fade effective image processing analysis technique to evaluate internal bond strength of particleboard. Quart. J. For. Res. Of Taiwan 23: 13–24. 76. Lin C.J., Tsai M.J. and Wang S.Y. (2006) Nondestructive evaluation techniques for assessing dynamic modulus of elasticity of moso bamboo (Phyllosachys edulis) lamina. Journal of Wood Science 52:342–347. 77. Lu K.T. (2006) Effects of hydrogen peroxide treatment on the surface properties and adhesion of ma bamboo (Dendrocalamus latiflorus). Journal of Wood Science 52: 173–178. 78. Mburu F., Dumarcay S., Bocquet J.F., Petrissans M. and Gérardin P. (2008) Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polymer Degradation and Stability 93: 401–405. 79. Mishiro A. (1996) Effect of density on ultrasonic velocity in wood. Mokuzai Gakkaishi 42: 887–894. 80. Mosier N., Wyman C., Dale B. and Elander R., Lee Y.Y., Holtzapple M. and Ladisch M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96: 673–686. 81. Mohebby B. and Llbeighi F. (2007) Physical and mechanical properties of hydrothermally modified medium density fiberboard (MDF) IPPS: 601–605. 82. Moubarik, A., Allal A., Pizzi A., Charrier F. and Charrier B. (2010) Characterization of a formaldehyde-free cornstarch-tannin woodadhesive for interior plywood. European Journal of Wood and Wood Products 68: 427–433. 83. Newman R.H., Porter L.J., Foo L.Y., Johns S.R. and Willing R.I. (1987) High-resolution 13C NMR studies of proanthocyanidin polymers (condensed tannins). Magnetic Resonance in Chemistry 25: 118–124. 84. Nugroho N. and Ando N. (2001) Development of structural composite products made from bamboo II: fundamental properties of laminated bamboo lumber. Journal of Wood Science 47: 237–242. 85. Obataya E., Kitin P. and Yamauchi H. (2007) Bending characteristics of bamboo (Phyllosachys pubescens) with respect to its fiber-foam composite structure. Wood Science and Technology 41: 385–400. 86. Okubo K., Fujii T. and Yamamoto Y. (2004) Development of bamboo-based polymer composites and their mechanical properties. Composites: Part A 35: 377–383. 87. Park H.M., Fushitani M., Sato K., Kubo T. and H. S. Byeon (2003) Static bending strength performances of cross-laminated woods made with five species. Journal of Wood Science 49: 411–417. 88. Pandey K.K. (2005) Study of the effect of photo-irradiation on the surface chemistry of wood. Polymer Degradation and Stability 90: 375–379. 89. Peterson K.R. (1994) The role of nondestructive evaluation in assuring the wise use of our timber resource. NDT 1994 9th International Symposium on Nondestructive Testing of Wood, pp 7–9. 90. Pichelin F., Kamoun C. and Pizzi A. (1999) Hexamine hardener behaviour: effects on wood glueing, tannin and other wood adhesives. Holz als Roh- und Werkstoff 57: 305–317. 91. Pichelin F., Nakatani M., Pizzi A., Wieland S., Despres A. and Rigolet S. (2006) Structural beams from thick wood panels bonded industrially with formaldehyde-free tannin adhesives. Forest Products Journal 56: 31‒36. 92. Pizzi A. (1993) Wood Adhesives: Chemistry and Technology, Vol. 1. New York: Marcel Dekker. 93. Pizzi A. and Stephanou A. (1994) A 13C NMR study of polyflavonoid tannin adhesive intermediates. II. colloidal state reactions. Journal of Applied Polymer Science 51: 2125–2130 94. Pizzi A. and Tekely P. (1995) Mechanism of polyphenolic tannin resin hardening by hexamethylenetetramine: CP–MAS 13C-NMR. Journal of applied polymer science 56: 1645–1650. 95. Sernek M., Boonstra M., Pizzi A., Despres A. and Gerardin P. (2008) Bonding performance of heat treated wood with structural adhesives. Holz als Roh 66: 173–180. 96. Sharma B., Gatóo A., Bock M. and Ramagn M. (2015a) Engineered bamboo for structural applications. Construction and Building Materials 81: 66–73. 97. Sharma B., Gatóo A. and Ramage M.H. (2015b) Effect of processing methods on the mechanical properties of engineered bamboo. Construction and Building Materials 83: 95–101. 98. Shangguan W.W., Gong Y.C., Zhao R.J. and Ren H. (2016) Effects of heat treatment on the properties of bamboo scrimber. Journal of Wood Science 62: 383–391. 99. Sun B., Silva J.M.R. and Spranger I. (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry 46: 4267‒4274. 100. Tabarsa T. and Chui Y.H. (1997) Effects of hot-pressing on properties of white spruce. Forest Products Journal 47: 71–76. 101. Thompson D. and Pizzi A. (1995) Simple 13C-NMR methods for quantitative determinations of polyflavonoid tannin characteristics. Journal of Applied Polymer Science 55: 107–112. 102. Tung Y.T., Wu J.H., Hsieh C.Y., Chen P.S. and Chang S.T. (2009) Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by on-line screening method. Food Chemistry 115: 1019–1024. 103. Verma C.S. and Chariar V.M. (2012) Development of layered laminate bamboo composite and their mechanical properties. Composites: Part B 43: 1063–1069. 104. Wang S.Y., Chen J.H., Tsai M.J., Lin C.J. and Yang T.H. (2008) Grading of softwood lumber using non-destructive techniques. Journal of Materials Processing Technology 208: 149–158. 105. Wang X.Q. and Ren H.Q. (2008) Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescensMazel) and two wood species. Applied Surface Science 254: 7029–7034. 106. Wang X., Ren H., Zhang B. and I. Burgert (2012) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. Journal of the Royal Society Interface 9: 988–996 107. Wei S.D., Zhou H.C., Lin Y.M., Liao M.M. and Chai W.M. (2010) MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of Acacia confusa. Molecules 15: 4369‒4381. 108. Windeisen E., Strobel C. and Wegener G. (2007) Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology 41: 523–536. 109. Winistorfer P.M., Xu W. and Wimmer R. (1995) Application of a drill resistance technique for density profile measurement in wood composite panels. Forest Products Journal 45: 90–93. 110. Wu J.H., Chung M.J. and Chang S.T. (2004) Evaluation of the effectiveness of alcohol-borne reagents on the green colour protection of makino bamboo (Phyllostachys makinoi). Polymer Degradation and Stability 83: 473–479. 111. Xu W. and Steiner P.R. (1995) A statistical characterization of the horizontal density distribution in flakeboard. Wood Fiber Science 27(2): 119–125. 112. Yang T.H., Wang S.Y., Lin C.J. and Tsai M.J. (2008) Evaluation of the mechanical properties of Douglas fir and Japanese cedar lumber and its structural glulam by nondestructive techniques. Construction and Building Material 22: 487–493. 113. Yang T.H., Wang S.Y., Tsai M.J. and Lin C.J. (2009a) The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment 44: 231–236. 114. Yang T.H., Wang S.Y., Tsai M.J., C.J. Lin and Y.J. Chuang (2009b) Effect of fire exposure on the mechanical properties of glued laminated timber. Materials and Design 30: 698–703. 115. Yildiz S., Gezer E.D. and Yildiz U.C. (2006) Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment 41: 1762–1766. 116. Yu W.J. and Yu Y.L. (2013) Development and prospect of wood and bamboo scrimber industry in China China Wood Industry 27: 5–8. 117. Yu Y., Zhu R., Wu B., Hu Y. and Yu W. (2015) Fabrication, material properties, and application of bamboo scrimber. Wood Science and Technology 49:83–98. 118. Yu H.Q., Jiang Z.H., hse C.Y. and Shupe T.F. (2008) Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). Journal Tropical Forest Scicence 20: 258–263. 119. Zhang Y., Yu W.J. and Zhang Y.H. (2013) Effect of steam heating on the color and chemical properties of Neosinocalamus Affinis bamboo. Journal of Wood Chemistry and Technology 33: 235–246. 120. Zhang Y.M., Yu Y.L. and Yu W.J. (2013) Effect of thermal treatment on the physical and mechanical properties of phyllostachys pubescen bamboo. European Journal of Wood and Wood Products 71:61–67. 121. Zhang Y., Nanda M., Tymchyshyn M., Yuan Z. and Xu C. (2016) Mechanical, thermal, and curing characteristics of renewable phenol-hydroxymethylfurfural resin for application in bio-composites. Journal of Materials Science 51: 732–738. 122. Zhao R.J., Jiang Z.H., Hse C.Y. and Shupe T.F. (2010) Effects of steam treatment on bending properties and chemical composition of moso bamboo (Phyllostachys pubescens). Journal of Tropical Forest Science 22: 197–201.
摘要: 
本研究選取臺灣及中國竹材加工業市場廣泛使用之孟宗竹(Phyllostachys pubescens)及臺灣桂竹(P. makinoi)進行定向竹重組板材(Oriented bamboo scrimber board,OBSB)製造及其性能評估,除探討去竹皮加工(Epidermis-peeling treatment,EPT)及蒸汽熱處理(Steam-heating treatment,SHT)對於各項基本性質及製成OBSB後之影響外,亦比較不同組合型式之竹木混合板材(Bamboo-wood composites,BWC)與OBSB性質差異。再者,利用無甲醛相思樹皮單寧膠(AcBTanGlu),評估與酚甲醛(PF)、脲素甲醛(UF)樹酯所製作OBSB性質之差異,另將OBSB以三層型式製成直交式集成OBSB板材(Cross laminated-OBSB,CL-OBSB),評估不同組合比例之CL-OBSB各項性能。試驗結果顯示,孟宗竹及桂竹經EPT及SHT後將提升半纖維素、抽出成分及灰分的百分比含量,而全纖維素及α-纖維素的含量百分比則降低,各竹材經SHT後之木質素含量並無明顯差異。未去皮竹材呈現較大的抗彎彈性模數(MOE)及抗彎強度(MOR)值,經SHT之後,MOE及MOR值均下降,當竹材經過EPT後則會提升吸水率(WA%),而SHT將降低竹材的吸水性。再者,評估中國產(C-OBSB)及臺灣產(T-OBSB)二種孟宗竹所製造之OBSB各項性質的結果顯示,超音波傳遞速度(Vu)、MOE、MOR值及內聚強度(IB)值均與板材密度呈正比關係,且T-OBSB之Vu (//)、MOE、MOR值及IB值亦明顯較C-OBSB高,Vu (┴)顯示較木理方向低,而以T1.0B的MOR值最大(172.88 MPa)。
此外,評估八種OBSB竹材之各項性質顯示含竹皮經蒸汽熱處理桂竹(TPmE-H)製成OBSB的 Vu (//)及動彈性模數(//)(DMOE(//))最高,而以CMoso-H最低,竹材經SHT後再製成OBSB時,其Vu (//)及DMOEu (//)均無顯著差異(p > 0.05);至於垂直木理方向之Vu (┴) 及DMOEu (┴)則較平行木理方向低。由MOE (//)及MOR (//)值均顯示TPmE-H經SHT後可獲最大值(分別為19.58 GPa及196.50 MPa)。此外,竹材經SHT的回彈率(SB)較低,由TMoso製成OBSB之 IB值(3.04 N/mm2)最高。其TMoso-H可獲207.83 kgf最大的木螺釘保持力(SHS)值。竹材經SHT後製成OBSB之吸水率(WA%)、體積膨脹率(S%)及厚度膨脹率(TS%)均明顯下降,顯示尺寸安定性獲得改善。BWC方面的Vu及打音音速值(Vt)以GroupⅡ(全竹廢料)最高,MOE、MOR及SHS值則顯示GroupⅤ(竹/木/竹=1:2:1)可獲最大的值。WA%值與竹廢料含量呈正比關係,而TS%則呈現反比情形,又因邊皮材廢料的半纖維素含量較廢竹材料高,因此廢竹材比例與TS%及S均呈反比關係。利用桂竹及PF膠製成OBSB,其Vu (//) 、Vt (//)、DMOEu (//) 及DMOEt (//)值均顯著地較孟宗竹及UF膠高,桂竹及孟宗竹製成OBSB後同樣為DMOEu值 > DMOEt值 > MOE值。當桂竹經SHT後並配合PF膠合劑製成OBSB時可獲最大的MOR值(210.5 MPa),而桂竹及孟宗竹經SHT後可降低OBSB之WA%、TS%及S%值,亦可提升OBSB尺寸安定性。
再者,AcBTanGlu之聚酚類經13C核磁共振分析儀(13C NMR)及散反射式傅立葉轉換紅外線光譜儀(DRIFT)圖譜分析得知富含酚類化合物及類黃酮鍵結組成之B型縮合單寧。由六叉極化魔角旋轉(CP/MAS)13C-NMR圖譜得知其縮合單寧可與六亞甲基四胺形成網狀結構之高分子化合物,由GC-MS分析顯示未出現甲醛的訊號,經熱重分析得知具良好熱穩定性且未影響原竹材之化學官能基特性。當AcBTanGlu混合2%六亞甲基四胺,於150 oC熱壓溫度下持續15 min所壓製成的OBSB可獲最大的膠合剪斷強度。AcBTanGlu做為OBSB膠合劑後之Vt、Vu、DMOEu、DMOEt、SHS、尺寸安定性均較UF及PF膠合者高,經白腐菌(L. b.)及褐腐菌(L. s.)耐腐朽試驗後顯示具良好的耐腐朽性。OBSB製成CL-OBSB三層結構材料,平行方向之Vu、DMOEu、Vt及DMOE值與明顯地較垂直方向測值高,其中以Type Ⅲ(2:1:2)將可獲得最大的Vu (//) 值,由於Type Ⅲ平行木理方向之竹條佔80%,故MOE、MOR及壓縮強度(C)值均顯示最大。利用PF做為CL-OBSB材料時之膠合剪斷強度顯示S//值僅為S┴值1.03倍及可獲得卓著的膠合剪斷強度及尺寸安定性。

Moso bamboo (Phyllostachys pubescens) and makino bamboo (P. makinoi) are important economic bamboo species in Taiwan and China. This research evaluated the effects of epidermis-peeling (EPT) and steam-heating (SHT) treatments on basic properties of these two bamboo culms and oriented bamboo scrimber board (OBSB) made from them. Comparison was also made between species from Taiwan and China. Moreover, OBSB was compared against bamboo-wood composites (BWC) made using coniferous slabwood and makino bamboo residue of various proportions to explore their differences in properties. Furthermore, OBSB was manufactured using different adhesives including phenol formaldehyde (PF) resin, water-soluble urea formaldehyde (UF) resin and glue made of tannin extracted from Acacia bark (AcBTanGlu) to determine their impact on OBSB properties. Finally, cross-laminated OBSB (CL-OBSB) was processed using layers of OBSB in different orientations to examine the differences in performance. Significant results obtained are summarized that EPT and SHT changed the chemical and mechanical properties of moso and makino bamboo culms from both Taiwan and China. In terms of chemical properties, the amounts of extractives and ash were increased after EPT and SHT in both moso and makino bamboos. In contrast, the contents of holocellulose and α-cellulose were decreased after EPT and SHT for the two bamboos. Steam-heated moso bamboo collected from China contained the lowest cellulose content but the highest amount of hemicellulose. The contents of lignin whose structure was not destroyed at 120oC showed no significant difference after SHT. As for mechanical properties, the density of all makino and moso bamboo samples were reduced after SHT. Moreover, the trend of decrease in density was similar to that of reduction in holocellulose, α-cellulose, hemicellulose, and equilibrium moisture contents. All bamboo samples with epidermis intact presented the highest modulus of elasticity (MOE) and modulus of rupture (MOR) whether steam-heated or not. Epidermal integrity contributed to dimensional stability of the bamboo. Both MOE and MOR of all bamboo samples were decreased after SHT. The water absorption (WA%) ability was increased after EPT but decreased after SHT. Besides, OBSB made using moso bamboo grown in Taiwan (T-OBSB) and China (C-OBSB) was examined using non-destructive techniques (NDT). Ultrasonic-wave velocity (Vu) measurements were obtained at three density levels (0.8, 0.9, and 1.0 g/cm3) and the dynamic modulus of elasticity (DMOEu) was calculated. Moreover, static MOE, MOR, profile density distribution, internal bond strength (IB), springback (SB), and dimensional stability were determined using traditional methods. Positive linear relationships between density and Vu, DMOEu, MOE, and MOR were observed for measurements parallel (//) or perpendicular (┴) to fiber direction of the OBSB.
Moreover, Vu(//), MOEu(//), MOE(//), and MOR(//) were higher than Vu(┴), DMOEu(┴), MOE(┴), and MOR(┴). C-OBSB had slightly lower Vu(//), Vu(┴), DMOEu(//) and DMOEu(┴) than T-OBSB. On the other hand, T-OBSB had higher MOE(//), MOE(┴), and MOR(//) than C-OBSB, but lower MOR(┴). The profile density distribution of high-density T-OBSB showed significant data scattering. The profile density distribution of C-OBSB was homogeneous at all density levels. IB and SB data were directly proportional to density, but WA%, thickness swelling (TS%), and volumetric swelling (S%) were inversely proportional to density. T-OBSB has better bonding, strength and dimensional stability than C-OBSB. BWC made using makino bamboo residue alone was found to have the highest Vu and Vt. In terms of strength properties, BWC made with bamboo/wood/bamboo at 1:2:1 ratio exhibited the maximum MOE, MOR, and SHS. Moreover, WA% was positively correlated with while TS% was inversely related to the proportion of bamboo residue in BWC samples. When OBSB made using makino bamboo strips and PF resin showed significantly higher Vu (//), Vt (//), DMOEu (//) and DMOEt (//) than that made using moso bamboo strips and UF resin. Moreover, SHT and use of PF resin as adhesive in the processing contributed to achieve highest MOR of 210.5 MPa. OBSB made using either makino or moso bamboo strips presented the same trend of DMOEu > DMOEt > MOE. Moreover, higher MOR was observed in OBSB made using moso bamboo strips. OBSB made using steam-heated makino and moso bamboo had lower WA%, TS% and S%, thus enhancing its dimensional stability.
When glue made from AcBTanGlu examined using 13C NMR and DRIFT analysis revealed B-type condensed tannins rich in phenolic compounds and flavonoid bonds. CP / MAS 13C-NMR spectrum also showed that the condensed tannins could form a network of polymer compounds with hexamethylenetetramine. Analysis by GC-MS revealed no formaldehyde signal, while thermogravimetric analysis showed good thermal stability and insignificant effect on chemical properties of the original bamboo material. Mixing AcBTanGlu with 2% hexamethylenetetramine, followed by hot pressing at 150°C for 15 min resulted in maximum gluing strength for OBSB. Using AcBTanGlu as adhesive for processing OBSB contributed to higher Vt, Vu, DMOEu, DMOEt, SHS and dimensional stability than using PF and UF. Moreover, OBSB glued with AcBTanGlu showed good decay resistance. At last, CL-OBSB made using three layers of OBSB in different orientations revealed that Vu, DMOEu, Vt, and DMOE were significantly higher in CL-OBSB made with bamboo layered in parallel than in perpendicular direction. Maximum Vu (//), MOE, MOR, and compression strength was observed in CL-OBSB made with 80% of bamboo strips layered in parallel direction. Shear strength analysis on CL-OBSB made using PF resin as adhesive showed S// only 1.03 times that of S┴ and exhibited excellent gluing strength and dimensional stability.
URI: http://hdl.handle.net/11455/95758
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-20起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8101033002-1.pdf4.77 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.