Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95760
標題: 恆春半島鵝鑾鼻蔓榕物候動態與模式
Phenological Dynamics and Model of Ficus pedunculosa var. mearnsii in Hengchun Peninsula
作者: 郭礎嘉
Chu-Chia Kuo
關鍵字: 鵝鑾鼻蔓榕;物候動態;模式;天氣事件;Ficus pedunculosa var. mearnsii;phenological dynamic;model;wheather events
引用: 中央氣象局 (2017) 氣候監測報告。2108年1月8日,取自http://www.cwb.gov.tw/V7/climate/watch/watch.htm。 江允芃 (2013) 北臺灣雀榕與大葉雀榕之物候及小蜂種間關係。臺灣大學生態學與演化生物學研究所學位論文,91頁。 何伊喬、曾彥學、曾喜育 (2011) 台中大坑地區稜果榕物候之探討。林業研究季刊33(4): 21-32。 何坤益 (2008) 愛玉子榕果形態與物候之研究。嘉大農林學報5(1): 32-43。 何坤益、呂福原、歐辰雄 (1998) 薜荔之榕果發育與生殖週期之觀察。林業研究季刊20(2): 27-40。 吳明進、陳幼麟 (1993) 臺灣的氣候分區。大氣科學21(1): 55-66。 吳惠綸、郭耀綸 (2011) 迎風與背風樹種葉片耐風機械損傷及耐脫水損傷之比較。作物、環境與生物資訊8(2): 129-138。 巫紅霏 (1996) 陽明山地區牛奶榕 (Ficus erecta L.) 與牛奶榕小蜂 (Blastophaga nipponica) 之共生生態。國立臺灣大學動物學研究所碩士論文,54頁。 李冠誼 (2012) 臺灣白肉榕的物候。臺灣大學生態學與演化生物學研究所學位論文,140頁。 李思瑩、盧孟明 (2010) 近五十年台灣極端高溫之分析。2010台北災害管理研討會論文集: 5-6。 李清縢、吳明進 (2005) 冬季東亞及台灣區域氣候模擬。全球變遷通訊雜誌(45): 1-7。 周柏安 (2017) 鵝鑾鼻蔓榕榕果小蜂之種間關係及族群動態。國立中興大學森林系碩士論文,114頁。 林上揚 (2016) 豬母乳榕樹上『榕-小蜂-蟻』群聚的種間交互關係。國立臺灣大學生態學與演化生物學研究所博士論文,158頁。 林達德 (2003)以機器視覺與計算機繪圖學為基礎的虛擬植物系統之建構。國立臺灣大學生物產業機電工程學系暨研究所計畫,4頁。 林讚標、劉哲政、楊居源、黃瑞祥、李永生、張森永 (1990) 愛玉與薜荔隱花果形態與其生化特性比較。林業試驗所研究報告季刊5(1): 37-43。 邱于庭 (2012) 鵝鑾鼻蔓榕物候與族群遺傳多樣性之研究。中興大學森林學系所學位論文,108頁。 邱清安、林博雄 (2004) 由測站資料推估台灣之氣溫與降水之空間分布。大氣科學32(4): 329-350。 侯加林、王一鳴、董喬雪、張軍 (2004) 植物形態結構類比與視覺化研究進展。農業機械學報36(3): 159-163。 姚若潔 (1998) 薜荔榕小蜂 (Wiebesia pumilae (hill)) 與薜荔 (Ficus pumila var. pumila L.) 之共生關係。國立台灣大學植物病蟲害學研究所碩士論文,63頁。 洪秀雄、胡仲英 (1989) 颱風引發焚風之初步研究。大氣科學17(1): 1-43。 胡樹萱 (1998) 墾丁高位珊瑚礁森林稜果榕開花週期與榕果小蜂交互關係之研究。私立東海大學生物學系碩士論文,92頁。 張林、羅天祥 (2004) 植物葉壽命及其相關葉性狀的生態學研究進展。植物生態學報28(06): 844-852。 張晏禎 (2016) 臺灣產榕屬(桑科)植物葉片結構性狀之研究。中興大學森林學系所,125頁。 張雯純 (2003) 嘉義地區金氏榕開花物候與授粉生態之研究。國立嘉義大學農學院林業研究所碩士論文。106頁。 張雯純、呂福原、何坤盆、曾喜育 (2009) 金氏榕之榕果形態構造。林業研究季刊31(3): 1-16。 符瑜、潘學標 (2011) 草本植物物候及其物候模擬模型的研究進展。中國農業氣象32(3): 319-325。 許智宏、種康 (2015) 植物細胞分化與器官發生。科學出版社,275頁。 陳玟璇 (2012) 稜果榕榕果生產及其揮發物之季節性變化。中興大學森林學系所學位論文,155頁。 陳燕玲 (1998) 澀葉榕 (Ficus irisana Elm.) 與榕果小蜂之物候週期及種間關係。國立中興大學昆蟲學系碩士論文,70頁。 陳穎儒 (1994) 榕果小蜂與正榕 (Ficus microcarpa L.) 之物候週期及種間關係。國立臺灣大學植物病蟲害學系碩士論文,72頁。 曾喜育 (1997) 惠蓀林場牛奶榕與牛奶榕小蜂之共生研究。國立中興大學森林學系碩士論文,104頁。 曾喜育、曾麗蓉、歐辰雄、呂福原 (2005a) 關刀溪森林生態系之臺灣榕物候。中華林學季刊38(4): 277-395。 曾喜育、曾麗蓉、毆辰雄、呂福原 (2005b) 惠蓀林場台灣榕的榕果生產表現。林業研究季刊27(2): 45-60。 曾喜育、歐辰雄、呂福原 (2003) 惠蓀林場牛奶榕之榕果物候。臺灣林業科學18(4): 273-282。 曾喜育、歐辰雄、呂福原、曾麗蓉 (2004) 關刀溪森林生態系牛奶榕物候及性別分化之表現。林業研究季刊26(2): 61-78。 曾麗蓉 (1999) 惠蓀林場台灣榕開花物候與授粉生態之研究。國立中興大學森林學系碩士論文,86頁。 曾麗蓉、歐辰雄、呂福原、曾喜育 (2000) 臺灣榕榕果形態構造及發育。林業研究季刊22(3): 55-68. 黃建秦 (2007) 山豬枷 (Ficus tinctoria) 的物候與榕果小蜂的關係。國立中山大學生物科學系研究所碩士論文,92頁。 黃鈺婷 (2015) 榕果功能性性狀之種間及種內差異及其生態關聯。成功大學生命科學系學位論文,94頁。 楊大榮、趙庭周、王瑞武、張光明、宋啟示 (2001) 西雙版納熱帶雨林聚果榕小蜂的傳粉生態學。動物學研究22(2): 89-92。 楊妍辰、王建林、宋迎波 (2012) WOFOST作物模型機理及使用介紹。氣象科技進展 3(5): 29-35。 楊惠雯 (2010) 正榕與授粉小蜂的物候及族群互動的季節變異。國立臺灣大學生態學與演化生物學研究所碩士論文,101頁。 劉怡洵 (2014) 臺灣地區恆春半島斯氏榕物候之研究。中興大學森林學系所學位論文,68頁。 劉明禮 (2009) 臺灣山脈地形對大氣強製作用所造成的波動現象。天氣分析與預報研討會: 261-265。 潘學標 (2003) 作物模型原理。氣象出版社,203頁。 盧冰、史永強、王光輝、嶽斌 (2014) 新疆克拉瑪依強下坡風暴的機理研究。氣象學報72(6): 1218-1230。 薛兆翔 (2017) 雪見地區植物開花結實物候及特殊低溫事件之影響。中興大學森林學系所學位論文,133頁。 謝玫眞 (1992) 榕果小蜂與正榕 (Ficus microcarpa L.) 之共生硏究。國立臺灣大學動物學研究所碩士論文,52頁。 Ahmed, S., S.G. Compton, R.K. Butlin, and P.M. Gilmartin (2009) Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proceedings of the National Academy of Sciences 106(48):20342-20347. Anstett, M.C., F. Kjellberg, and J.L. Bronstein (1996) Waiting for wasps: consequences for the pollination dynamics of Ficus pertusa L. Journal of Biogeography 23(4):459-466. Anstett, M.-C., G. Michaloud, and F. Kjellberg (1995) Critical population size for fig/wasp mutualism in a seasonal environment: effect and evolution of the duration of female receptivity. Oecologia 103(4):453-461. Anstett, M.C., M. Hossaert‐McKey, and D. McKey (1997) Modeling the persistence of small populations of strongly interdependent species: figs and fig wasps. Conservation Biology 11(1):204-213. Antonovics, J. (2006) Evolution in closely adjacent plant populations X: long-term persistence of prereproductive isolation at a mine boundary. Heredity. 97:33-37. Antonovics, J., and A.D. Bradshaw (1970) Evolution in closely adjacent plant populations VIII. Clinal patterns at a mine boundary. Heredity 25:349–362. Atkinson, B. (1981) Meso-scale Atmospheric Circulations. Academic, San Diego, Calif:495 Atkinson, B. (1995) Introduction to the fluid mechanics of meso-scale flow fields. P. 1-22 in Diffusion and Transport of Pollutants in Atmospheric Mesoscale Flow Fields. Springer. Bain, A., L.-S. Chou, H.-Y. Tzeng, Y.-C. Ho, Y.-P. Chiang, W.-H. Chen, Y.-T. Chio, G.-Y. Li, H.-W. Yang, F. Kjellberg, and M. Hossaert-McKey (2014) Plasticity and diversity of the phenology of dioecious species in Taiwan. Acta Oecologica 57:124–134. Bain, A., R.D. Harrison, and B. Schatz (2014) How to be an ant on figs. Acta Oecologica 30(1):e12. Bain, A., H.-Y. Tzeng, W.-J. Wu, and L.-S. Chou (2015) Ficus (Moraceae) and fig wasps (Hymenoptera: Chalcidoidea) in Taiwan. Botanical Studies 56(1):11. Ballestrini, C., W. Tezara, and A. Herrera (2011) Environmental drivers of leaf phenology in trees of the tropical species Ficus obtusifolia. Brazilian Journal of Plant Physiology 23(2):113-122. Berg, C.C., E.J.H. Corner, and H.P. Noteboom (2005) Moraceae (Ficus). Nationaal Herbarium Nederland. 730 p. Bronstein, J., and D. McKey (1989) The fig/pollinator mutualism: a model system for comparative biology. Experientia 45(7):601-604. Bronstein, J.L., and A. Patel (1992) Temperature-sensitive development: consequences for local persistence of two subtropical fig wasp species. American Midland Naturalist:397-403. Bronstein, J.L., P.H. Gouyon, C. Gliddon, F. Kjellberg, and G. Michaloud (1990) The ecological consequences of flowering asynchrony in monoecious figs: a simulation study. Ecology 71(6):2145-2156. Burd, M. (1998) “Excess” flower production and selective fruit abortion: a model of potential benefits. Ecology 79(6):2123-2132. Caffarra, A., A. Donnelly, I. Chuine, and M.B. Jones (2011) Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Climate Research 46(2):147-157. Cannell, M. (1990) Modelling the phenology of trees. Silva Carelica (Finland). Carberry, P., R. Ranganathan, L. Reddy, Y. Chauhan, and M. Robertson (2001) Predicting growth and development of pigeonpea: flowering response to photoperiod. Field crops research 69(2):151-162. Castillo-Llanque, F., and H.F. Rapoport (2011) Relationship between reproductive behavior and new shoot development in 5-year-old branches of olive trees (Olea europaea L.). Trees 25(5):823-832. Chen, C.-H., and L.-Y. Chou (1997) The Blastophagini of Taiwan (Hymenoptera: Agaonidae: Agaoninae). Journal of Taiwan Museum 50:113-154. Chen, H., Y. Peng, Y. Zhang, and R.T. Corlett (2015) Winter cropping in Ficus tinctoria: an alternative strategy. Scientific Reports 5. Chen, J.-M., and H.-S. Chen (2011) Interdecadal variability of summer rainfall in Taiwan associated with tropical cyclones and monsoon. Journal of Climate 24(22):5786-5798. Chiou, C.-R., Y.-C. Liang, Y.-J. Lai, and M.-Y. Huang (2004) A study of delineation and application of the climatic zones in Taiwan. Journal of Taiwan Geographic Information Science(1):41-62. Chiu, Y.-T., A. Bain, S.-L. Deng, Y.-C. Ho, W.-H. Chen, and H.-Y. Tzeng (2017) Effects of climate change on a mutualistic coastal species: Recovery from typhoon damages and risks of population erosion. PLOS ONE 12(10):e0186763. Chou, L.-S., and H.M. Yeh (1995) The pollination ecology of Ficus aurantiaca var. parvifolia. Acta Zoologica Taiwanica 6:1-12. Chuine, I., and J. Régnière (2017) Process-Based Models of Phenology for Plants and Animals. Annual Review of Ecology, Evolution, and Systematics 48(1). Chuine, I., I.G. de Cortazar-Atauri, K. Kramer, and H. Hänninen (2013) Plant development models. P. 275-293 in Phenology: an integrative environmental science. Springer. Corner, E.J.H. (1965) Check-list of Ficus in Asia and Australasia with keys to identification. Botanic Gardens Singapore. 186 p. Corner, E.J.H. (1985) Ficus (Moraceae) and Hymenoptera (Chalcidoidea): Figs and their pollinators. Biological Journal of the Linnean Society 25(2):187-195. D’Souza, L., S. Nivas, A. Rao, S. Hedge, and I. D’Silva. 2009. Rejuvenation of mature plant tissues. P. 421-430 in Plant tissue culture and molecular markers: Their role in improving crop productivity, Kumar, A., and H.C. Arya (eds.). I. K. International Pvt Ltd. Damstra, K.S.J., S. Richardson, and B. Reeler (1996) Synchronized fruiting between trees of Ficus thonningii in seasonally dry habitats. Journal of Biogeography 23(4):495-500. Davis, C.C., C.G. Willis, B. Connolly, C. Kelly, and A.M. Ellison (2015) Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species'' phenological cueing mechanisms. American Journal of Botany 102(10):1599-1609. Dubé, P.A., L.P. Perry, and M.T. Vittum (1984) Instructions for phenological observations: Lilacand honeysuckle. Vermont Agricultural Experiment Station Bulletin. Forrest, J., and A.J. Miller-Rushing (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1555):3101-3112. Galil, J. (1967) Sycomore wasps from ancient Egyptian tombs. Galil, J., and D. Eisikowitch (1968a) Flowering cycles and fruit types of Ficus sycomorus in Israel. New Phytologist 67(3):745-758. Galil, J., and D. Eisikowitch (1968b) On the Pollination Ecology of Ficus Sycomorus in East Africa. Ecology 49(2):259-269. Galil, J., and D. Eisikowitch (1974) Further studies on pollination ecology in Ficus sycomorus II. Pocket filling and emptying by Ceratosolen arabicus Mayr. New Phytologist 73(3):515-528. Gordon, R., and A. Bootsma (1993) Analyses of growing degree-days for agriculture in Atlantic Canada. Climate Research:169-176. Häkkinen, R., T. Linkosalo, and P. Hari (1995) Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in Central Finland for the period 1896–1955. Tree physiology 15(11):721-726. Harrison, R.D. (2001) Drought and the consequences of El Niño in Borneo: a case study of figs. Population Ecology 43(1):63-75. Harrison, R.D. (2005) Figs and the diversity of tropical rainforests. AIBS Bulletin 55(12):1053-1064. Harrison, R.D. (2006) Mortality and recruitment of hemi-epiphytic figs in the canopy of a Bornean rain forest. Journal of Tropical Ecology 22(4):477-480. Harrison, R.D., and J.-Y. Rasplus (2006) Dispersal of fig pollinators in Asian tropical rain forests. Journal of Tropical Ecology 22(6):631-639. Harrison, R.D., and M. Shanahan (2005) Seventy-seven ways to be a fig: Overview of a diverse plant assemblage. P. 111-127 in Pollination Ecology and the Rain Forest. Springer. Harrison, R.D., and N. Yamamura (2003) A few more hypotheses for the evolution of dioecy in figs (Ficus, Moraceae). Oikos 100(3):628-635. Harrison, R.D., N. Yamamura, and T. Inoue (2000) Phenology of a common roadside fig in Sarawak. Ecological Research 15(1):47-61. Herre, E.A., K.C. Jandér, and C.A. Machado (2008) Evolutionary ecology of figs and their associates: Recent progress and outstanding puzzles. Annual Review of Ecology, Evolution, and Systematics 39(1):439-458. Hossaert-McKey, M., and J.L. Bronstein (2001) Self-pollination and its costs in a monoecious fig (Ficus aurea, Moraceae) in a highly seasonal subtropical environment. American Journal of Botany 88(4):685-692. IPCC (2013) Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge. 285-312 p. Jevanandam, N., A.G. Goh, and R.T. Corlett (2013) Climate warming and the potential extinction of fig wasps, the obligate pollinators of figs. Biology letters 9(3):20130041. Jousselin, E., J.-Y. Rasplus, and F. Kjellberg (2003) Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution 57(6):1255-1269. Kameyama, T., R. Harrison, and N. Yamamura (1999) Persistence of a fig wasp population and evolution of dioecy in figs: a simulation study. Researches on Population Ecology 41(3):243-252. Kameyama, Y., and G. Kudo (2009) Flowering phenology influences seed production and outcrossing rate in populations of an alpine snowbed shrub, Phyllodoce aleutica: effects of pollinators and self-incompatibility. Annals of Botany 103(9):1385-1394. Khadari, B., M. Gibernau, M.-C. Anstett, F. Kjellberg, and M. Hossaert-McKey (1995) When figs wait for pollinators: the length of fig receptivity. American Journal of Botany:992-999. Kikuzawa, K. (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. The American Naturalist 138(5):1250-1263. Kikuzawa, K. (1995) Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany 73(2):158-163. Kitajima, K., S.S. Mulkey, M. Samaniego, and S.J. Wright (2002) Decline of photosynthetic capacity with leaf age and position in two tropical pioneer tree species. American Journal of Botany 89(12):1925-1932. Kjellberg, F., and S. Maurice (1989) Seasonality in the reproductive phenology of Ficus: Its evolution and consequences. Cellular and Molecular Life Sciences 45(7):653-660. Kjellberg, F., P.H. Gouyon, M. Ibrahim, M. Raymond, and G. Valdeyron (1987) The stability of the symbiosis between dioecious figs and their pollinators: a study of Ficus carica L. and Blastophaga psenes L. Evolution 41(4):693-704. Kuaraksa, C., and S. Elliott (2013) The use of Asian Ficus species for restoring tropical forest ecosystems. Restoration Ecology 21(1):86-95. Kuaraksa, C., S. Elliott, and M. Hossaert-Mckey (2012) The phenology of dioecious spp. tree species and its importance for forest restoration projects. Forest Ecology and Management 265:82–93. Kuo, C.-C., A. Bain, Y.-T. Chiu, Y.-C. Ho, W.-H. Chen, L.-S. Chou, and H.-Y. Tzeng (2017) Topographic effect on the phenology of Ficus pedunculosa var. mearnsii (Mearns fig) in its northern boundary distribution, Taiwan. Scientific Reports 7(1):14699. Kuo, Y.-L., M.-K. Huang, and Y.-L. Yang (2013) Dynamic variations in the photosynthetic capacity in a leaf’s lifetime for five Taiwanese tree species at different successional stages. Taiwan Journal of Forest Science 28(1):17-28. Lambert, F.R., and A.G. Marshall (1991) Keystone characteristics of bird-dispersed Ficus in a Malaysian lowland rain forest. Journal of Ecology 79(3):793-809. Lin, I. I. and Chan, J. C. (2015) Recent decrease in typhoon destructive potential and global warming implications. Nature communications 6: 7182. Lin, S.-Y., Chou, L.-S., Bain, A. (2017) Sugar secretion and ant protection in Ficus benguetensis: Toward a general trend of fig–ant interactions. Acta Oecologica. In Press. Lin, S.-Y., L.-S. Chou, B. Di Giusto, and A. Bain (2015a) Sexual specialization in phenology in dioecious Ficus benguetensis and its consequences for the mutualism. Botanical Studies 56(1):32. Linkosalo, T., R. Häkkinen, and H. Hänninen (2006) Models of the spring phenology of boreal and temperate trees: is there something missing? Tree Physiology 26(9):1165-1172. Luedeling, E., and A. Gassner (2012) Partial least squares regression for analyzing walnut phenology in California. Agricultural and Forest Meteorology 158:43-52. Meehl, G.A., T.F. Stocker, W.D. Collins, A. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, and A. Noda (2007) Global climate projections. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Merilä, J., and A.P. Hendry (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications 7(1):1-14. Milton, K. (1991) Leaf change and fruit production in six neotropical Moraceae species. The Journal of Ecology:1-26. Milton, K., D.M. Windsor, D.W. Morrison, and M.A. Estribi (1982) Fruiting phenologies of two neotropical Ficus species. Ecology 63(3):752-762. Munns, R. (2005) Genes and salt tolerance: bringing them together. New Phytologist 167(3):645-663. NASA Goddard Institute for Space Studies (2017) GISS Surface Temperature Analysis. Retrieved January 8, 2018, from https://data.giss.nasa.gov/gistemp/. Nason, J.D., E.A. Herre, and J. Hamrick (1998) The breeding structure of a tropical keystone plant resource. Nature 391(6668):685-687. Navas, M.L., B. Ducout, C. Roumet, J. Richarte, J. Garnier, and E. Garnier (2003) Leaf life span, dynamics and construction cost of species from Mediterranean old‐fields differing in successional status. New Phytologist 159(1):213-228. Ordidge, M., T. Chiurugwi, F. Tooke, and N.H. Battey (2005) LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. The Plant Journal 44(6):985-1000. Patel, A. (1996) Variation in a mutualism: phenology and the maintenance of gynodioecy in two Indian fig species. Journal of Ecology 84(5):667-680. Patel, A. (1997) Phenological patterns of Ficus in relation to other forest trees in southern India. Journal of Tropical Ecology 13(5):681-695. Patel, A., and D. McKey (1998) Sexual specialization in two tropical dioecious figs. Oecologia 115(3):391-400. Patel, A., and M. Hossaert-McKey (2000) Components of reproductive success in two dioecious fig species, Ficus exasperata and Ficus hispida. Ecology 81(10):2850-2866. Patiño, S., E. Herre, and M.T. Tyree (1994) Physiological determinants of Ficus fruit temperature and implications for survival of pollinator wasp species: comparative physiology through an energy budget approach. Oecologia 100(1-2):13-20. Porter, J.R., and M. Gawith (1999) Temperatures and the growth and development of wheat: a review. European Journal of Agronomy 10(1):23-36. Pothasin, P., S.G. Compton, and P. Wangpakapattanawong (2016) Seasonality of leaf and fig production in Ficus squamosa, a fig tree with seeds dispersed by water. PLOS ONE 11(3):e0152380. Prusinkiewicz, P. (2004) Modeling plant growth and development. Current opinion in plant biology 7(1):79-83. Prusinkiewicz, P., M. Hammel, J. Hanan, and R. Měch (1997) Visual models of plant development. P. 535-597 in Handbook of formal languages. Springer. Ramirez, W. (1974) Coevolution of Ficus and Agaonidae. Annals of the Missouri Botanical Garden 61(3):770-780. Reaumur, R. (1735) Thermometric observations made at Paris during the year 1735, compared to those made below the Equator on the Isle of Mauritius, at Algiers, and on a few of our American Islands. Paris Memoirs. Reich, P., M. Walters, and D. Ellsworth (1992) Leaf life‐span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological monographs 62(3):365-392. Reich, P.B., D.S. Ellsworth, M.B. Walters, J.M. Vose, C. Gresham, J.C. Volin, and W.D. Bowman (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80(6):1955-1969. Richardson, A.D., T.F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169:156–173. Richardson, J.L., M.C. Urban, D.I. Bolnick, and D.K. Skelly (2014) Microgeographic adaptation and the spatial scale of evolution. Trends in Ecology & Evolution 29(3):165–176. Ritchie, J., and S. Otter-Nacke (1985) Testing and Validating the CERES-Wheat Model in Diverse Environments. AgRISTART Publ. No YM-15-00407. NTIS, Springfield, VA, USA. Rodriguez, L.J., A. Bain, L.-S. Chou, L. Conchou, A. Cruaud, R. Gonzales, M. Hossaert-McKey, J.-Y. Rasplus, H.-Y. Tzeng, and F. Kjellberg (2017) Diversification and spatial structuring in the mutualism between Ficus septica and its pollinating wasps in insular South East Asia. BMC Evolutionary Biology 17(1): 207. Running, S.W., and E.R. Hunt Jr (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BCG, and an application for global-scale models. Schwartz, M.D. (1998) Green-wave phenology. Nature 394(6696):839-840. Schwartz, M.D. (2013) Phenology: an integrative environmental science. Springer, Dordrecht. Setiyono, T., A. Weiss, J. Specht, A. Bastidas, K.G. Cassman, and A. Dobermann (2007) Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field crops research 100(2):257-271. Shaffer, M. (1987) Minimum viable populations: coping with uncertainty. Viable populations for conservation 69:86. Shaffer, M.L., and F.B. Samson (1985) Population size and extinction: a note on determining critical population sizes. The American Naturalist 125(1):144-152. Shanahan, M., S. So, S.G. Compton, and R. Corlett (2001) Fig-eating by vertebrate frugivores: a global review. Biological Reviews 76(4):529-572. Shimura, T., N. Mori, and H. Mase (2015) Future projection of ocean wave climate: Analysis of SST impacts on wave climate changes in the Western North Pacific. Journal of Climate 28(8):3171-3190. Sofiev, M., P. Siljamo, H. Ranta, T. Linkosalo, S. Jaeger, A. Rasmussen, A. Rantio-Lehtimaki, E. Severova, and J. Kukkonen (2013) A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International journal of biometeorology 57(1):45-58. Spencer, H., G. Weiblen, and B. Flick (1996) Phenology of Ficus variegata in a seasonal wet tropical forest at Cape Tribulation, Australia. Journal of Biogeography 23(4):467-475. Stanley, J. (2016) Factors affecting fruit set and fruit quality along branch units of different apricot cultivars. New Zealand journal of crop and horticultural science 44(3):171-191. Tsou, C.-H., P.-Y. Huang, C.-Y. Tu, C.-T. Chen, T.-P. Tzeng, and C.-T. Cheng (2016) Present Simulation and Future Typhoon Activity Projection over Western North Pacific and Taiwan/East Coast of China in 20-km HiRAM Climate Model. Terrestrial, Atmospheric & Oceanic Sciences 27(5): 687-703. Tzeng, H.-Y. (2004) Taxonomic study of the Genus Ficus in Taiwan. National Chung Hsing University, Department of Forestry, Taichung. Tzeng, H.-Y., F.-Y. Lu, C.-H. Ou, K.-C. Lu, and L.-J. Tseng (2006) Pollinational-mutualism strategy of Ficus erecta var. beecheyana and Blastophaga nipponica in seasonal Guandaushi forest ecosystem, Taiwan. Botanical Studies 47(3):307-318. Tzeng, H.-Y., L.-J. Tseng, C.-H. Ou, and F.-Y. Lu (2005) Phenology of Ficus formsana Maxim. at Guandaushi forest ecosystem. Quarterly Journal of Chinese Forestry 38(4):377-395. Tzeng, H.-Y., L.-J. Tseng, C.-H. Ou, K.-C. Lu, F.-Y. Lu, and L.-S. Chou (2008) Confirmation of the parasitoid feeding habit in Sycoscapter, and their impact on pollinator abundance in Ficus formosana. Symbiosis (Rehovot) 45(1):129. Valdeyron, G., and D.G. Lloyd (1979) Sex differences and flowering phenology in the common fig, Ficus carica L. Evolution 33(2):673-685. Valencia, E., M. Mendez, N. Saavedra, and F.T. Maestre (2016) Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species. Plant Ecology, Evolution and Systematics 21:31-40. Verkerke, W. (1988) Sycone morphology and its influence on the flower structure of Ficus sur (Moraceae). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series C: Biological and medical sciences:26. Volkmar, K., Y. Hu, and H. Steppuhn (1998) Physiological responses of plants to salinity: a review. Canadian journal of plant science 78(1):19-27. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T.J.C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein (2002) Ecological responses to recent climate change. Nature 416(6879):389-395. Wang, J.-C., W.-L. Chiou, H.-M. Chang, W. Zhenzhe, Q. Wenliang, and Z. Heming (2012) A preliminary red list of Taiwanese vascular plants. Endemic Species Research Institute, Nantou, Taiwan. 466 p. Wang, R.-W., J. Ridley, B.-F. Sun, Q. Zheng, D.W. Dunn, J. Cook, L. Shi, Y.-P. Zhang, and W.Y. Douglas (2009) Interference competition and high temperatures reduce the virulence of fig wasps and stabilize a fig-wasp mutualism. PLOS ONE 4(11):e7802. Ware, A.B., and S.G. Compton (1994) Dispersal of adult female fig wasps: 2. Movements between trees. Entomologia Experimentalis et Applicata 73(3): 231-238. Warren, M., M.P. Robertson, and J.M. Greeff (2010) A comparative approach to understanding factors limiting abundance patterns and distributions in a fig tree–fig wasp mutualism. Ecography 33(1):148-158. Weiblen, G.D. (2002) How to be a fig wasp. Annual review of entomology 47(1):299-330. Weiblen, G.D., S.B. Lomascolo, R. Oono, and E.R. Dumont (2010) Nutritional dimorphism in New Guinea dioecious figs. Biotropica 42(6):656-663. White, M.A., P.E. Thornton, and S.W. Running (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global biogeochemical cycles 11(2):217-234. Whittaker, R. (1965) Branch dimensions and estimation of branch production. Ecology 46(3):365-370. Yan, H.P., M.Z. Kang, P. De Reffye, and M. Dingkuhn (2004) A dynamic, architectural plant model simulating resource‐dependent growth. Annals of Botany 93(5):591-602. Yang, H.-W., H.-Y. Tzeng, and L.-S. Chou (2013) Phenology and pollinating wasp dynamics of Ficus microcarpa Lf: adaptation to seasonality. Botanical Studies 54(1):11. Zhang, L.-S., S.G. Compton, H. Xiao, Q. Lu, and Y. Chen (2014) Living on the edge: Fig tree phenology at the northern range limit of monoecious in China. Acta Oecologica 57:135–141. Zhang, Y., D.-R. Yang, Y.-Q. Peng, and S.G. Compton (2012) Costs of inflorescence longevity for an Asian fig tree and its pollinator. Evolutionary ecology 26(3):513-527. Zhao, T.-T., S.G. Compton, Y.-J. Yang, R. Wang, and Y. Chen (2014) Phenological adaptations in Ficus tikoua exhibit convergence with unrelated extra-tropical fig trees. PLOS ONE 9(12):e114344.
摘要: 
全球氣候變遷跡象明確,極端氣象事件頻率上升。在氣象事件強度增加、範圍變廣的情況下,分布於海岸前緣的鵝鑾鼻蔓榕族群是最容易受到威脅的物種之一。鵝鑾鼻蔓榕為高位珊瑚礁岩的先驅物種,生長在高鹽、高輻射、高溫、強風、土壤淺薄、養分與淡水缺乏的嚴苛環境。臺灣是鵝鑾鼻蔓榕分布的北端,族群數量較稀少,分布狹隘,屬於易危物種。為了物種保育,本研究透過2010-2016年在恆春的青蛙石地區與佳樂水地區的長期物候監測資料,分析解構鵝鑾鼻蔓榕葉候與榕果物候以及各項生產特性,並結合氣象資料,了解鵝鑾鼻蔓榕的物候循環與物候中斷的成因。最後透過模式估計,計算不同氣象條件下鵝鑾鼻蔓榕與其授粉蜂的存續能力。
研究結果顯示,鵝鑾鼻蔓榕具有高生產力的特性,單一枝條上的葉生產期可以長達700-1500天,榕果生產期最長可達1000天,榕果生產週期重疊使在同一枝條上將近3年的時間持續有果。當枝條越大,鵝鑾鼻蔓榕的株內不同步性機率越高,生產週期重疊的機率也越高。在榕果的特性上,鵝鑾鼻蔓榕的A期發育時間相對其他榕屬植物較短,使鵝鑾鼻蔓榕可以快速補充B期榕果的數量;B期榕果在沒有授粉蜂進入的情況下,最長可以維持4週;C期榕果具有相對較長的發育時間與較好的耐候性;這些榕果特性皆可以提高授粉蜂族群延續的機率。
自鵝鑾鼻蔓榕在一年內的循環變化可見,鵝鑾鼻蔓榕的葉候不具性別分化,區域內總體植株無論雌雄株幾乎全年保持有葉且趨勢一致。整體葉量有明顯的季節趨勢,且受到溫度影響。果候的性別分化明顯,在一年間雄株通常具有多次的果量高峰期,雌株的果量則集中在夏季最高,整體的C期榕果量也與溫度有線性相關。雄株的榕果常有頻繁的生長周期,且株間高度不同步,鵝鑾鼻蔓榕的物候特性展現出典型雌雄異株榕屬植物的格局。
青蛙石步道植株與佳樂水植株的物候差異主要來自於地形、位置的差異,使得兩區域整體的物候在同一氣象事件下有不同的變化趨勢。在青蛙石步道地區主要影響植株物候的氣象事件多為颱風,當颱風帶來的風向為西向或西南向,並配合超過10 m/s的強風以及超過 5m的大浪時,對青蛙石步道的植株影響最大。在佳樂水地區的植株同樣受到颱風事件影響,然而因為暴露在礁岩上,颱風對植株干擾的程度較大,2013年的天兔颱風與2016年的莫蘭蒂颱風皆造成全體植株超過70%的葉量損失以及90%雄株C期果量的損失。除了颱風外,每年的寒流帶來的鹽害也造成佳樂水的植株乾枯、葉量與果量減少的現象。雖然在耐鹽性試驗中顯示鵝鑾鼻蔓榕具有非常良好的鹽份耐性,枝條浸泡在鹽水中超過24小時以及在葉片上堆鹽粒都不會造成太大的損傷。但是若發生物理傷害,在葉表皮受到損傷的情況下,葉片會迅速枯死。雖然佳樂水地區的植株較青蛙石步道地區的更容易受到干擾,然而頻繁的干擾使佳樂水地區的植株幼年化,在單位枝條上具有較高的榕果量。
自鵝鑾鼻蔓榕的CPS模式中顯示,鵝鑾鼻蔓榕延續授粉蜂族群至100年所需的雄株數量相對較少,主要是因為鵝鑾鼻蔓榕的生產間隔較短,頻繁甚至重疊的生產周期使鵝鑾鼻蔓榕能有效延續授粉蜂族群。TCPS模式與TTCPS模式的模擬值能反映實際值變化,代表模式具有一定的預測能力。在溫度條件惡化與颱風頻度、強度增加的情況下,雄株數量在20-30株間受到的影響最大,數量增加至50株以上才能達到授粉蜂族群穩定的標準。依據模式模擬的結果顯示,青蛙石步道的植株數量使授粉蜂族群能夠穩定延續,而佳樂水地區的授粉蜂族群有40-60%機率在百年內消失。
本研究建構的模式有一定的延展性,然而模式仍有未竟之處。未來除了進行各項試驗以改良模式之外,擬加入ICPP的氣候變遷模擬,了解在不同氣候變遷情境下對鵝鑾鼻蔓榕的影響。

In the context of global climate change, the global average temperature rises, the intensity of typhoon increases, and the sea level also increases. The increased frequency of strong typhoon threatens the survival of coastal plant species. Ficus pedunculosa var. mearnsii (Mearns fig), which inhabits only on the coastal uplifted coral reef is a pioneer species. Because of a small population and living in such harsh environment (thin soil, high temperature, scarce nutrition and fresh water coupled frequent sea-sprays increasing the environment salinity), Mearns fig is a vulnerable species.
For the conservation of this species, this study estimated the crop characteristics, phenological dynamic, and relations with meteorological factors of Mearns fig during seven years (2010-2016) in Frog Rock Trail and Jialeshuei in Hengchun Peninsula. From this data, a model was built to simulate the fig phenology and assess the persistence of pollinating wasp population for a given period in given climatic conditions. The result showed that Mearns fig is adapted the harsh coastal environment and can maintain its wasp population through high productivity and rapid recovery. Even in a single branch, Mearns fig still can have overlapping production cycles. The basic features of leaf and fig phenologies in Frog Rock Trail ware similar to that of Jialeshuei. The phenological differences between the two populations were due to different environmental conditions. Typhoons, cold wave, and extreme temperature events were the major negative factor. Typhoon and cold wave not only caused direct physical damages, but also induced physiological damages caused by salt, and leading to leaf, fig, branch, even tree death. The production of leaves and figs was continuous all year-round. Tender leaves tended to appear before early rains in spring; the largest amount mature leaves concentrated in spring and summer, while the largest amount of senescent leaves concentrated in summer. In fig phenology, the highest abundance of female figs was in spring and summer. The male individual produced figs all year-around, and the amount of interfloral phase figs indirectly affected by temperature.
The model simulation was in the line with observation dynamic, indicating that the model has a predictive ability in the actual phenology dynamic. The results of the model estimation show that the current population is sufficient to sustain the population of pollinators in Frog Rock Trail. However, the population of pollinator in Jialeshui still have a certain probability of extinction, if the frequency and intensity of extreme temperature events and typhoons increase.
URI: http://hdl.handle.net/11455/95760
Rights: 同意授權瀏覽/列印電子全文服務,2021-02-08起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8103033002-1.pdf5.71 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.