Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95763
DC FieldValueLanguage
dc.contributor吳耿東zh_TW
dc.contributor.author施侑杉zh_TW
dc.contributor.authorYu-Shan Shihen_US
dc.contributor.other森林學系所zh_TW
dc.date2017zh_TW
dc.date.accessioned2018-10-12T03:58:23Z-
dc.identifier.citation中華民國國家標準(2002)木漿用材含水量試驗法。經濟部標準檢驗局,CNS 6947, 類號P3041。 中華民國國家標準(2004)木材灰分試驗法。經濟部標準檢驗局,CNS 3084, 類號O2016。 行政院(2009)再生能源發展條例。 行政院環保署(2016)中華民國國家清冊報告。 吳耿東(2008)認識生質能源。物理雙月刊30(4):377-388。 吳耿東(2010)流體化床與生質能。科學發展 450: 20-25 吳耿東、李宏台(2001)廢棄物氣化技術。工程月刊74(4):85-96。 吳耿東、李宏台(2004)生質能源化腐朽為能源。科學發展383:21-27。 吳耿東、李宏台(2007)全球生質能源應用現況與未來展望。林業研究專訊Vol.14 No.3。 顏翊卉(2012)農林廢棄物焙燒產物之燃料特性研究。國立中興大學森林學系碩士論文,台中。 許弘德(2013)焙燒生質物於流體化床進行氣化之研究。國立中興大學森林學系碩士論文,台中。 Ahmed, I. and A. Gupta (2009a) Characteristics of cardboard and paper gasification with CO2. Applied Energy 86: 2626-2634. Ahmed, I. and A. Gupta (2009b) Evolution of syngas from cardboard gasification. Applied Energy 86: 1732-1740. Bar-Ziv, E. and I.I. Kantorovich (2001) Mutual effects of porosity and reactivity in char oxidation. Prog Energy Combust Sci 27:667–697. Bergman, P. C. A., A. R. Boersma, R. W. R. Zwart and J. H. A. Kiel (2005b) Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Research Centre of the Netherlands, ECN-C-05-013. Bibens, B. P. (2010) Integrating biomass torrefaction pretreatment with gasification. uga. Blackwood, J. and A. Ingeme (1960) The reaction of carbon with carbon dioxide at high pressure. Aust J Chem 13:194–209. Butterman, H. C. and M. J. Castaldi (2009) CO2 as a carbon neutral fuel source via enhanced biomass gasification. Environ. Sci. Technol.43:9030–9037. Chen, Q., J. Zhou, B. Liu, Q. Mei and Z. Luo (2011a) Influence of torrefaction pretreatment on biomass gasification technology. Chinese Science Bulletin 56: 1449-1456. Chen, W. H., W. Y. Cheng, K. M. Lu and Y. P. Huang (2011b) An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy 88: 3636-3644. Chen, W. H. and P. C. Kuo (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35: 2580-2586. Cheng, Y., Z. Thow and C. H. Wang (2016) Biomass gasification with CO2 in a fluidized bed. Powder Technology 296:87–101. Couhert, C., S. Salvador and J. Commandre (2009) Impact of torrefaction on syngas production from wood. Fuel 88: 2286-2290. Dasappa, S., P.J. Paul, H.S. Mukunda and U. Shrinivasa (1994) The gasification of wood-char spheres in CO2–N2 mixtures: analysis and experiments. Chem Eng Sci 49:223–232. De Andrés, J. M., A. Narros and M. E. Rodríguez (2011) Behaviour of dolomite, olivine and alumina as primary catalysts in air–steam gasification of sewage sludge. Fuel 90: 521-527. Deng, J., G.J. Wang, J.H. Kuang, Y.L. Zhang and Y.H. Luo (2009) Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis 86: 331-337. Devi, L., K. J. Ptasinski and F. J. Janssen (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass and Bioenergy 24: 125-140. Franco, C., F. Pinto, I. Gulyurtlu and I. Cabrita (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82: 835-842. Guo, X., B. Xiao, S. Liu, Z. Hu, S. Luo and M. He (2009) An experimental study on air gasification of biomass micron fuel (BMF) in a cyclone gasifier. International Journal of Hydrogen Energy 34: 1265-1269. Henriksen, U., J. Ahrenfeldt, T.K. Jensen, B. Gobel, J.D. Bentzen, C. Hindsgaul and L.H. Sorensen (2006) The design, construction and operation of a 75 kW twostage gasifier. Energy 31:1542–1553. Hernández, J. J., G. Aranda-Almansa and A. Bula (2010) Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology 91: 681-692. Huang, Y, X. Yin, C. Wu, C. Wang, J. Xie, Z. Zhou, L. Ma and H. Li (2009) Effects of metal catalysts on CO2 gasification reactivity of biomass char. Biotechnol Adv 27:568–72. Indraneel, S., A. Sane, W. Wang and J. P. Gore (2014) Experimental and modeling study of pinewood char gasification with CO2. Fuel 119:38-46. Kantarelis, E., P. Donaj, W. Yang and A. Zabaniotou (2009) Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG). Journal of hazardous materials 167: 675-684. Kantorovich, I.I. and E. Bar-Ziv (1999) Heat transfer within highly porous chars: a review. Fuel 78:279–299. Karmakar, M. and A. Datta (2011) Generation of hydrogen rich gas through fluidized bed gasification of biomass. Bioresource technology 102: 1907-1913. Lahijani, P., M. Mohammadi, Z.A.B.Z. Alauddin and A.R. Mohamed (2015) Advances in CO2 gasification reactivity of biomass char through utilization of radio frequency irradiation. Energy 93:976-983. Li, X.T. (2001) Biomass gasification in a circulating fluidized bed. Ph.D. Dissertation, University of British Columbia, Vancouver, Canada. Li, C. and K. Suzuki (2009) Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renewable and Sustainable Energy Reviews 13: 594-604. Lv, P., Z. Yuan, L. Ma, C. Wu, Y. Chen and J. Zhu (2007) Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renewable Energy 32: 2173-2185. Miccioa, F., B. Piriou, G. Ruoppolo and R. Chirone (2009) Biomass gasification in a catalytic fluidized reactor with beds of different materials. Chemical Engineering Journal 154: 369-374. Molina, A. and F. Mondragón (1998) Reactivity of coal gasification with steam and CO2. Fuel 77:1831–1839. Mun, T.Y., J.O. Kim, J.W. Kim and J.S. Kim (2011) Influence of operation conditions and additives on the development of producer gas and tar reduction in air gasification of construction woody wastes using a two-stage gasifier. Bioresource technology 102: 7196-7203. Nordgreen, T., V. Nemanova, K. Engvall and K. Sjöström (2012) Iron-based materials as tar depletion catalysts in biomass gasification: Dependency on oxygen potential. Fuel 95: 71-78. Pimchuai, A., A. Dutta and P. Basu (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy & Fuels 24: 4638-4645. Prins, M. J., K. J. Ptasinski and F. J. J. G. Janssen (2006a) More efficient biomass gasification via torrefaction. Energy 31: 3458-3470. Prins, M. J., K. J. Ptasinski and F. J. J. G. Janssen (2006b) Torrefaction of wood: Part 1. Weight loss kinetics. Journal of analytical and applied pyrolysis 77: 28-34. Qiao, L., J. Xu, A. Sane and J. Gore (2012) Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas-phase chemistry. Combust Flame 159:1693–1707. Qin, Y.H., J. Feng and W.Y. Li (2010) Formation of tar and its characterization during air–steam gasification of sawdust in a fluidized bed reactor. Fuel 89: 1344-1347. Renganathan T., M.V. Yadav, S. Pushpavanam, R.K. Voolapalli and Y.S. Cho (2012) CO2 utilization for gasification of carbonaceous feedstocks: a thermodynamic analysis. Chem. Eng. Sci. 83:159–170. Simons, G. A. (1983) Role of pore structure in coal pyrolysis and gasification. Prog Energy Combust Sci 9:269–290. Svoboda, K., M. Pohořelý, M. Hartman and J. Martinec (2009) Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology 90: 629-635. Uemura, Y., W. N. Omar, T. Tsutsui and S. B. Yusup (2011) Torrefaction of oil palm wastes. Fuel 90: 2585-2591. Umeki, K., T. Namioka and K. Yoshikawa (2012) The effect of steam on pyrolysis and char reactions behavior during rice straw gasification. Fuel Processing Technology 94: 53-60. Van der Stelt, M. J. C., H. Gerhauser, J. H. A. Kiel and K. J. Ptasinski (2011) Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy 35: 3748-3762. Weerachanchai, P., M. Horio and C. Tangsathitkulchai (2009) Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresource technology 100: 1419-1427. Wen, C. and Y. Yu (1966) A generalized method for predicting the minimum fluidization velocity. AIChE Journal 12: 610-612. Yan, W., T. C. Acharjee, C. J. Coronella and V. R. Vásquez (2009) Thermal pretreatment of lignocellulosic biomass. Environmental progress & sustainable energy 28: 435-440. Zhang, Y., S. Kajitani, M. Ashizawa and Y. Oki (2010) Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace. Fuel 89: 302-309.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/95763-
dc.description.abstract焙燒係將生質物於一大氣壓且缺氧之環境下進行低溫碳化,將之轉換為具高熱值、儲存性更好的焙燒物;氣化程序則是在高溫下進行部分氧化反應,將生質物轉換為合成氣燃料。由於焙燒過程移去生質物大量的揮發份,使得焙燒生質物以空氣氣化並不能有效提高合成氣的產量與品質,因此,透過布多阿爾反應,利用二氧化碳於高溫進行焙燒生質物氣化,以提高合成氣之品質。 因此,本研究旨在利用30 kWth氣泡式流體化床氣化爐於700、800及850℃環境下進行未焙燒、250及350℃焙燒生質物之二氧化碳氣化相關研究,以探討二氧化碳對焙燒生質物氣化產物之影響,並比較以空氣作為氣化介質進行焙燒生質物氣化之結果。 研究結果顯示,和空氣氣化比較,焙燒生質物在高溫800℃以上進行二氧化碳氣化時,經由布多阿爾反應,可將高含碳量之焙燒生質物轉換並提昇合成氣中的一氧化碳含量達28.8 vol.%。此外,由於二氧化碳氣化生成之CnHm含量高過於空氣氣化,因此二氧化碳氣化可獲得較高之合成氣熱值,而且生成焦油含量也低於空氣氣化,而低至0.25 g/Nm3。 由此可見,焙燒生質物經二氧化碳氣化可獲得較高合成氣熱值及較低焦油含量,以改善焙燒生質物經空氣氣化之缺點。zh_TW
dc.description.abstractTorrefaction is a thermochemical pre-treatment technology at lower temperature under atmospheric conditions and in the absence of oxygen to convert the raw biomass into torrefied biomass with the higher heating value and better storage property. Gasification is a thermochemical process to convert biomass into the syngas fuel by partial oxidation at elevated temperature. However, removal of a large amount of volatiles after torrefaction, torrefied biomass gasification with air cannot enhance the syngas production and quality. Therefore, applying the Boudouard reaction, gasification of torrefied biomass with CO2 at higher temperature could improve the syngas quality. Therefore, in this study, gasification of the raw biomass and the biomass torrefied at 250 and 350oC, respectively with CO2 was carried out in a 30 kWth bubbling fluidized bed gasifier to compare with the results of gasification of torrefied biomass with air. Also, the effects of gasification of torrefied biomass with CO2 on the syngas composition were investigated. The results shows that carbon dioxide gasification at a higher temperature above 800oC can enhance CO concentration up to 28.8% compared with the air-blown gasification process, due to the Boudouard reaction with the higher carbon content of the torrefied biomass. In addition, because the CnHm content from CO2 gasification is higher than that from air-blown gasification, the heating value of the syngas is also higher from CO2 gasification. Also, CO2 gasification can decrease the tar content down to 0.25 g / Nm3. Therefore, gasification of torrefied biomass with CO2 can enhance syngas heating value and reduce the tar content to improve the disadvantages of air--blown gasification.en_US
dc.description.tableofcontents摘要 i Summary ii 目錄 iii 表目次 v 圖目次 vi 第一章 前言 1 第二章 文獻回顧 4 2.1生質能 4 2.2 生質物焙燒 8 2.3生質物氣化 9 2.3.1氣化技術之歷史 9 2.3.2 氣化程序及反應 10 2.3.3 影響氣化之操作參數 12 2.3.4 焦油 14 2.4焙燒生質物氣化 19 2.5二氧化碳氣化 21 第三章 實驗材料與方法 25 3.1 試驗材料 25 3.1.1 生質物原料 25 3.1.2 原料之性質分析 25 3.2 焙燒預處理 28 3.3 氣化實驗設備 31 3.3.1 氣化反應器 31 3.3.2 進料系統 35 3.3.3 氣體供給系統 35 3.3.4 合成氣處理系統 35 3.3.5合成氣分析系統 36 3.3.6 焦油採樣系統 37 3.3.7 床質 37 3.4實驗變數及操作條件 40 3.4.1 流體化氣速 40 3.4.2 空氣等值比 40 3.4.3 二氧化碳氣化設定 41 3.4.4 溫度 41 3.5 氣化實驗操作步驟 41 第四章 結果與討論 43 4.1 氣化原料之性質分析 43 4.2 焙燒溫度對合成氣組成之影響 45 4.3氣化溫度對合成氣組成之影響 52 4.4 焙燒溫度及氣化溫度對合成氣低熱值之影響 60 4.5 焙燒溫度及氣化溫度對合成氣中焦油含量之影響 63 4.6 操作條件影響之統整比較 67 第五章 結論與建議 69 5.1結論 69 5.2建議 70 參考文獻 71 作者自述 77   表目次 表2.1 焦油的分級 16 表3.1 實驗操作參數 42 表4.1 原料性質分析 44 表4.2 木材造粒灰分之金屬氧化物成分分析 66 表4.3 操作條件對合成氣組成、合成氣低熱值及焦油含量之影響 68   圖目次 圖1 台灣1990至2014年溫室氣體排放趨勢 3 圖2.1 2014年世界初級能源供應比例 6 圖2.2 生質能源技術總覽 7 圖2.3 氣化程序及產物 17 圖2.4 焦油形成示意圖 18 圖2.5 自熱式焙燒結合煤炭混合氣化系統示意圖 20 圖2.6 60 wt.%二氧化碳下各種類氣體之莫爾分率分布 23 圖3.1 生質物原料 27 圖3.2 500 g多段控溫石英焙燒爐系統流程圖 29 圖3.3 500 g多段控溫石英焙燒爐外觀 30 圖3.4 30 kWth 氣泡式流體化床氣化系統流程圖 32 圖3.5 30 kWth 氣泡式流體化床氣化系統外觀 33 圖3.6 氣泡式流體化床之氣化反應器結構 34 圖3.7 焦油取樣系統 38 圖3.8 焦油取樣箱 39 圖4.1 生質物氣化材料之H/C比與O/C比 47 圖4.2 焙燒木材造粒對空氣氣化合成氣組成之影響 48 圖4.3 焙燒木材造粒對二氧化碳氣化合成氣組成之影響 50 圖4.4 氣化溫度對二氧化碳氣化合成氣組成之影響 54 圖4.5 氣化溫度對空氣氣化合成氣組成之影響 56 圖4.6 氣化溫度對於CO、H2及CnHm含量之影響 58 圖4.7 焙燒及反應溫度對生質物氣化合成氣低熱值之影響 61 圖4.8 二氧化碳氣化與空氣氣化之合成氣低熱值 62 圖4.9 焙燒及反應溫度對二氧化碳氣化與空氣氣化焦油含量之影響 65zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2020-08-25起公開。zh_TW
dc.subject焙燒zh_TW
dc.subject氣化zh_TW
dc.subject生質物zh_TW
dc.subject二氧化碳zh_TW
dc.subject流體化床zh_TW
dc.subject布多阿爾反應zh_TW
dc.subjectTorrefactionen_US
dc.subjectGasificationen_US
dc.subjectBiomassen_US
dc.subjectCarbon dioxideen_US
dc.subjectfluidized beden_US
dc.subjectBoudouard reactionen_US
dc.title焙燒生質物於流體化床進行二氧化碳氣化之研究zh_TW
dc.titleTorrefied Biomass Gasification with Carbon Dioxide in a Fluidized Beden_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2020-08-25zh_TW
dc.date.openaccess2020-08-25-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextrestricted-
Appears in Collections:森林學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7102033031-1.pdf5.6 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.