Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorShyi-Dong Yehen_US
dc.contributor.authorWei-Yu Linen_US
dc.identifier.citationAshraf, M. A., Shahid, A. A., Rao, A. Q., Bajwa, K. S., and Husnain, T. 2014. Functional characterization of a bidirectional plant promoter from Cotton leaf curl Burewala virus using an agrobacterium-mediated transient Assay. Viruses 6, 223-242. Bosco, D., Mason, G., and Accotto, G. P. 2004. TYLCSV DNA, but not infectivity, can be transovarially inherited by the progeny of the whitefly vector Bemisia tabaci (Gennadius). Virology 323, 276-283. Briddon, R. W. and Markham, P. G. 1995. Geminiviridae. Edited by Murphy, F. A., Fauquet, C. M., Bishop, D. H. L., Ghabrial, S. A., Jarvis, A. W., Martelli, G. P., Mayo M. A. and Summers, M. D. Virus taxonomy: classification and nomenclature of viruses. New York. 158-165. Butterbach, P., Verlaan, M. G., Dullemans, A., Lohuis, D., Visser, R. G., Bai, Y., and Kormelink, R. 2014. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proceedings of the National Academy of Sciences USA 111, 12942-12947. Dalakouras, A., Moser, M., Zwiebel, M., Krczal, G., Hell, R., and Wassenegger, M. 2009. A hairpin RNA construct residing in an intron efficiently triggered RNA‐directed DNA methylation in tobacco. The Plant Journal 60, 840-851. Debreczeni, D. E., López, C., Aramburu, J., Darós, J. A., Soler, S., Galipienso, L., and Rubio, L. 2015. Complete sequence of three different biotypes of Tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain. Archives of Virology 160, 2117-2123. De Haan, P., Kormelink, R., Resende, R. D. O., Van Poelwijk, F., Peters, D., and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology 72, 2207-2216. Duan, C. G., Wang, C. H., and Guo, H. S. 2012. Application of RNA silencing to plant disease resistance. Science 3, 1-6. Eun, C., Lorkovic, Z. J., Sasaki, T., Naumann, U., Matzke, A. J. M., and Matzke, M. 2012. Use of forward genetic screens to identify genes required for RNA-directed DNA methylation in Arabidopsis thaliana. In Cold Spring Harbor Symposia on Quantitative Biology Vol. 77, 195-204. Fauquet, C. M., and Stanley, J. 2005. Revising the way we conceive and name viruses below the species level: a review of geminivirus taxonomy calls for new standardized isolate descriptors. Archives of Virology 150, 2151-2179. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A. 2005. Virus taxonomy: Eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press. 301-326. Finlay, K. W. 1953. Inheritance of spotted wilt resistance in the tomato II. Five genes controlling spotted wilt resistance in four tomato types. Australian Journal of Biological Sciences 6, 153-163. Fondong, V. N. 2013. Geminivirus protein structure and function. Molecular Plant Pathology 14, 635-649. Gover, O., Peretz, Y., Mozes-Koch, R., Maori, E., Rabinowitch, H. D., and Sela, I. 2014. Only minimal regions of Tomato yellow leaf curl virus (TYLCV) are required for replication, expression and movement. Archives of Virology 159, 2263-2274. Green, S. K., Sulyo, Y., and Lesemann, D. E. 1987. Outbreaks and New Records: Leaf curl virus on tomato in Taiwan Province. FAO Plant Protection Bulletin 35, 62 Grube, R. C., Radwanski, E. R., and Jahn, M. 2000. Comparative genetics of disease resistance within the Solanaceae. Genetics 155, 873-887. Guha, D., Priyadarshini, C. P., Purakayastha, A., Thippeswamy, R., Lakshmikanth, M., and Savithri, H. S. 2013. Biochemical characterization of C4 protein of Cotton leaf curl Kokhran Virus-Dabawali. Biochimica et Biophysica Acta (BBA)-General Subjects 1830, 3734-3744. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. A., and Fraley, R. T. 1985. A simple and general method for transferring genes into plants. Science 227, 1229-1231. Hutton, S. F., Scott, J. W., and Schuster, D. J. 2012. Recessive resistance to Tomato yellow leaf curl virus from the tomato cultivar Tyking is located in the same region as Ty-5 on chromosome 4. HortScience 47, 324-327. Jan, F. J., Green, S. K., Shih, S. L., Lee, L. M., Ito, H., Kimbara, J., Hosoi, K. and Tsai, W. S. 2007. First report of Tomato yellow leaf curl Thailand virus in Taiwan. Plant Disease 91, 1363-1363. Jeske, H., Lütgemeier, M., and Preiß, W. 2001. DNA forms indicate rolling circle and recombination‐dependent replication of Abutilon mosaic virus. The European Molecular Biology Organization journal 20, 6158-6167. Ji, Y., and Scott, J. W. 2006. Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6 of tomato. Tomato Genet Coop Rep 56, 22-25. Ji, Y., Scott, J. W., Schuster, D. J., and Maxwell, D. P. 2009. Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. Journal of the American Society for Horticultural Science 134, 281-288. Jones, D. R. 2005. Plant viruses transmitted by thrips. European Journal of Plant Pathology 113, 119-157. Jones, P. A., and Liang, G. 2009. Rethinking how DNA methylation patterns are maintained. Nature Reviews Genetics, 10, 805-811. Jyothishwaran, G., Kotresha, D., Selvaraj, T., Srideshikan, S. H., Rajvanshi, P. K., and Jayabaskaran, C. 2007. A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Current Science 93, 770-772. Kenyon, L., Tsai, W. S., Shih, S. L., and Lee, L. M. 2014. Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus research 186, 104-113 Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120. Kormelink, R., Storms, M., Van Lent, J., Peters, D., and Goldbach, R. 1994. Expression and subcellular location of the NSm protein of Tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200, 56-65. Lin, C. Y., Ku, H. M., Tsai, W. S., Green, S. K., and Jan, F. J. 2011. Resistance to a DNA and a RNA virus in transgenic plants by using a single chimeric transgene construct. Transgenic research 20, 261-270. Lommel, S. A., McCain, A. H., and Morris, T. J. 1982. Evaluation of indirect enzyme-linked immunosorbent assay for the detection of plant viruses. Phytopathology 72, 1018-1022. Lozano-Duran, R., and Bejarano, E. R. 2011. Geminivirus C2 protein might be the key player for geminiviral co-option of SCF-mediated ubiquitination. Plant Signal Behavior 6, 999-1001. Moury, B., Palloix, A., Selassie, K. G., and Marchoux, G. 1997. Hypersensitive resistance to Tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94, 45-52. Napoli, C., Lemieux, C., and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279-289. Ning, W., Shi, X., Liu, B., Pan, H., Wei, W., Zeng, Y., and Cheng, J. 2015. Transmission of Tomato yellow leaf curl virus by Bemisia tabaci as affected by whitefly sex and biotype. Scientific Reports 5. 1-5. Pappu, H. R., Jones, R. A. C., and Jain, R. K. 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research 141, 219-236. Parrella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C., and Marchoux, G. 2003. An update of the host range of Tomato spotted wilt virus. Journal of Plant Pathology 85, 227-264. Peiró, A., Cañizares, M. C., Rubio, L., López, C., Moriones, E., Aramburu, J., and Sánchez‐Navarro, J. 2014. The movement protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the tomato Sw‐5 gene‐based resistance. Molecular Plant Pathology 15, 802-813. Peng, J. C., Chen, T. C., Raja, J. A., Yang, C. F., Chien, W. C., Lin, C. H., Liu, F. L., Wu, H. W., and Yeh, S. D. 2014. Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. PLoS One 9, e96073. Peter Hanson, Paul Gniffke, Jin Shieh, and Chee-wee Tan. 2011. Solanaceous Vegetable Breeding at AVRDC–The World Vegetable Center to meet the challenges of climate change in the tropics. Proceedings of the Workshop on Crop Breeding and Management of Agricultural Environment for Coping with Climate Change. Taiwan, Taichung. p163-171. Ratnadass, A., Fernandes, P., Avelino, J., and Habib, R. 2012. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development 32, 273-303. Ribeiro, D., Borst, J. W., Goldbach, R., and Kormelink, R. 2009. Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta. Virology 383, 121-130. Rodríguez‐Negrete, E., Lozano‐Durán, R., Piedra‐Aguilera, A., Cruzado, L., Bejarano, E. R., and Castillo, A. G. 2013. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytologist 199, 464-475. Ronde, D., Pasquier, A., Ying, S., Butterbach, P., Lohuis, D., and Kormelink, R. 2014. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N‐terminal domain for avirulence and RNA silencing suppression. Molecular Plant Pathology 15, 185-195. Saitou N. and Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425. Shepherd, D. N., Martin, D. P., and Thomson, J. A. 2009. Transgenic strategies for developing crops resistant to geminiviruses. Plant Science 176, 1-11. Stevens, M. R., Lamb, E. M., and Rhoads, D. D. 1995. Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theoretical and Applied Genetics 90, 451-456. Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., and Okuno, T. 2002. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. Federation of European Biochemical Societies (FEBS) Letters 532, 75-79. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725-2729. Tsai, W. S., Shih, S. L., Kenyon, L., Green, S. K., and Jan, F. J. 2011. Temporal distribution and pathogenicity of the predominant tomato‐infecting begomoviruses in Taiwan. Plant Pathology 60, 787-799. Ultzen, T., Gielen, J., Venema, F., Westerbroek, A., de Haan, P., Tan, M. L., Schram A., Grinsven M. and Goldbach, R. 1995. Resistance to Tomato spotted wilt virus in transgenic tomato hybrids. Euphytica 85, 159-168. Wang, B., Li, F., Huang, C., Yang, X., Qian, Y., Xie, Y., and Zhou, X. 2014. V2 of Tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. Journal of General Virology 95, 225-230. Wang, M. B., Masuta, C., Smith, N. A., and Shimura, H. 2012. RNA silencing and plant viral diseases. Molecular Plant-Microbe Interactions 25, 1275-1285. Weng, S. H. and Tsai, C. W. 2013.Transmission biology of two tomato leaf curl viruses by Bemisia tabaci B and Q biotypes. Natioal Taiwan university master thesis, p39-42. Weng, S. H., Tsai, W. S., Kenyon, L., and Tsai, C. W. 2015. Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan. Annals of Applied Biology 166, 321-330. Whitfield, A. E., Ullman, D. E., and German, T. L. 2005. Tospovirus-thrips interactions. Annual Review of Phytopathology 43, 459-489. Wieczorek, P., and Obrępalska-Stęplowska, A. 2014. Suppress to survive—implication of plant viruses in PTGS. Plant Molecular Biology Reporter 33, 335-346. Wijkamp, I., Almarza, N., and Peters, D. 2013. Median latent period and transmission of tospoviruses vectored by thrips. Thrips Biology and Management 276, 153-156. Yang, C. F., Chen, K. C., Cheng, Y. H., Raja, J. A., Huang, Y. L., Chien, W. C., and Yeh, S. D. 2014. Generation of marker-free transgenic plants concurrently resistant to a DNA geminivirus and a RNA tospovirus. Scientific Reports 4, 1-10. Yang, Y., Li, R. and Qi, M. 2000. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. The Plant Journal, 22, 543-551. Yazhisai, U., Rajagopalan, P. A., Raja, J. A., Chen, T. C., and Yeh, S. D. 2015. Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus. Transgenic Research 24, 635-649. Yeh S. D., Bau H. J., Kung Y. J., Yu, T. A. 2006. Assessment of emerging virus threats for application of transgenic papaya resistant to Papaya ringspot virus. Ecological and Environmental Biosafety of Transgenic Plants: proceedings of international symposium, p1-19. Yeh, S. D., Lin, Y. C., Cheng, Y. H., Jih, C. L., Chen, M. J., and Chen, C. C. 1992. Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Disease 76, 835-840. Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., Oss, H. van, Kedar, N., Rabinowitch, H. D., and Czosnek, H. 1994. Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theoretical and Applied Genetics 88, 141-146. Zhang, Y., Zhang, C., and Li, W. 2012. The nucleocapsid protein of an enveloped plant virus, Tomato spotted wilt virus, facilitates long-distance movement of Tobacco mosaic virus hybrids. Virus Research 163, 246-253. Zhong, X., Hale, C. J., Law, J. A., Johnson, L. M., Feng, S., Tu, A., and Jacobsen, S. E. 2012. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nature Structural & Molecular Biology 19, 870-875.zh_TW
dc.description.abstract番茄是世界重要的作物之一,然而其生產被病毒病害所影響,其中又以雙生病毒屬(Begomovirus)的番茄黃化捲葉泰國病毒(Tomato yellow leaf curl Thailand virus, TYLCTHV)和番茄捲葉台灣病毒(Tomato leaf curl Taiwan virus, ToLCTWV)及番茄斑萎病毒(Tospovirus)的番茄斑萎病毒(Tomato spotted wilt virus, TSWV)在台灣最為嚴重。前人利用西瓜銀斑病毒(Watermelon silver mottle virus, WSMoV)之L RNA高度保留區域進行基因改良,讓圓葉菸草(Nicotiana benthamiana)能廣泛性對抗多種不同番茄斑萎病毒。另一研究將藿香薊黃脈病毒(Ageratum yellow vein virus, AYVV)的非轉錄區域(intergenic region, IGR)設計成廻紋結構,放入內含子中可引發DNA甲基化並可對藿香薊黃脈病毒提供抗性。在本研究結合上述兩個研究構築WL-IGRs,黏合番茄黃化捲葉泰國病毒和番茄捲葉台灣病毒的非轉錄區域,藉以增加抗性之廣泛性,將非轉錄區域設計成髮夾廻紋結構放入番茄刺激生長激素蛋白酶抑制子(Auxin-induced proteinase inhibitor)的內含子,再將此迴紋結構之內含子放入作為外顯子的L RNA高度保留區域,藉此讓轉基因圓葉菸草廣泛性對抗不同的番茄斑萎病毒及雙生病毒。構築質體的確認是利用PCR、限制酶剪切和定序驗證。再經由農桿菌轉殖圓葉菸草後,接種番茄斑萎病毒及番茄黃化捲葉泰國病毒選拔出九個不同抗性株系,並以聚合酶連鎖反應(polymerase chain reaction, PCR)確認其轉基因。其中株系28號對番茄斑萎病毒及番茄黃化捲葉泰國病毒具有高程度抗性。經由南方墨漬分析轉基因的拷貝數,株系28號在篩選基因及抗病基因WL-IGRs都具有三個拷貝數。由於實驗中的抗病基因WL-IGRs是放在雙T-DNA載體中,因此可以利用自交的方式將篩選基因剃除。本研究設計對抗薊馬傳播的番茄斑萎病毒及粉蝨傳播的雙生病毒兩屬重要的病毒,未來可應用在蕃茄等其他作物上有重要的應用價值。zh_TW
dc.description.abstractTomato is an important crop worldwide. However, the production of tomato is limited by virus diseases, among them the begomoviruses of Tomato yellow leaf curl Thailand virus, TYLCTHV) and Tomato leaf curl Taiwan virus (ToLCTWV), and the tospovirus of Tomato spotted wilt virus (TSWV) are considered the most serious threats in Taiwan. Our previous studies have shown that transgenic Nicotiana benthamiana plants carrying Watermelon silver mottle virus (WSMoV) L RNA conserved region provide broad-spectrum resistance to tospoviruses. Another study showed that a viral intergenic region as a hairpin structure inserted in an intron can induce DNA methylation and generate resistance against Ageratum yellow vein virus (AYVV). In this study, for generating transgenic resistance in N. benthamiana plants against tospoviruses and begomoviruses, we used agrobacteria carrying a construct of WL-IGRs, which contains WSMoV L conserved region as exonic sequences in which an intron (from auxin-induced proteinase inhibitor gene of tomato, DQ:L25128) containing a hairpin structure of TYLCTHV and ToLCTWV intergenic regions, for transformation. The transgene construct was verified by PCR, restriction enzyme digestion and sequencing, and then transferred to Agrobacterium tumefaciens for transformation of N. benthamina plants. Nine lines were selected for PCR analysis and resistance evaluation against Tomato spotted wilt virus (TSWV) and TYLCTHV. Among them line 28 showed high levels of resistance against TSWV and WSMoV. After Southern blotting analysis, line 28 showed three inserts of WL-IGRs transgene and three inserts of NptII selection marker. Because, WL-IGRs construct contains two T-DNAs, each with the selection marker or the transgene, thus marker-free transgenic lines can be obtained after selfing. Our approach is valuable for practical application to control important virus diseases on tomato caused by thrips-borne tospovirus and whitefly-borne begomovirus.en_US
dc.description.tableofcontents中文摘要..............................................i Abstract............................................ii 目次............................................... iii 圖表目次.............................................iv Introduction.........................................1 Materials and methods................................7 Virus sources........................................7 Phylogenetic tree analysis of begomovirus IGR........7 Construction of plant transformation vectors.........8 Agrobacterium transformation.........................9 Detection of intron splicing of pK2T-WL-IGRs........10 Nicotiana benthamiana transformation................10 Resistance evaluation...............................11 Southern hybridization..............................12 Results.............................................13 Phylogenetic tree analysis of begomovirus IGR.......13 Confirmation of the transgene construct............ 13 The intron of pK2T-WL-IGRs construct spliced........14 Confirming the transgenic construct in transgenic lines...15 Evaluation of resistance against TYLCTHV, TSWV and WSMoV...15 Insertion number detected in the resistant transgenic lines....15 Discussion..........................................16 References..........................................22 Tables and figures..................................30zh_TW
dc.subjectDNA methylationen_US
dc.subjecttransgenic resistanceen_US
dc.titleGeneration of transgenic Nicotiana benthamiana lines with broad-spectrum resistance to tospovirus and begomovirusen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:植物病理學系
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-7102035015-1.pdf1.37 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.