Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95910
標題: 因應坡地災害山坡地土地可利用限度分類之劃定研究
Delineation of utilization classification in response to slopeland disasters
作者: Cheng-Yu Lin
林政侑
關鍵字: Slopeland utilization classification;big data;topographic homogeneous unit;buffer zone;山坡地土地可利用限度分類;大數據;地形均質區;緩衝區位
引用: 1. 丁昭義、陳信雄(1981),「梨山果園施用之農藥對德基水庫下游水質之影響」,中華林學季刊,12(2):1-9。 2. 中華人民共和國(1991),「水土保持法」。 3. 尤姝媚(2009),「應用多時序遙測影像於海岸濕地監測與評估」,成功大學衛星資訊暨地球環境研究所學位論文。 4. 方彥凱(2003),「常態化植生指標標準差於土地利用分類之應用-以美濃中壇為例」,國立屏東科技大學土木工程系碩士論文。 5. 水土保持局(2010),「石門水庫土砂災害歷程分析」,研究報告。 6. 水土保持局(2016),「保育水土資源-山坡地範圍劃定檢討變更作業精進」,新聞稿。 7. 王兆文(2007),「山坡地土地利用分級坡度因子之探討」,國立中興大學水土保持學系博士論文。 8. 台灣電力公司(2007),「用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段-96年度工作計畫」。 9. 地政司(2017),「地政司衛星測量中心網站」(https://gps.moi.gov.tw /SSCenter/Introduce/)。 10. 行政院(2010),「行政院組織法」。 11. 何春蓀(1981),「普通地質學」,國立編譯館。 12. 李正兆(2009),「整合地電阻法與水文地質調查於崩塌地滑動之機制研究」,國立中央大學地球物理研究所博士論文。 13. 李建堂(1997),「土壤沖蝕的量測方法」,國立台灣大學地理學系地理學報,23:89-106。 14. 李振榮、楊新兵、劉海軍、劉雲強、宋慶豐(2009),「土壤分化促成與改良研究進展綜述」,中國水土保持,8:15-17。 15. 沈哲緯、曹鼎志(2009),「邊坡防護工程中植物根系固土機制與穩定分析初探」,水保技術,4(1):47-55。 16. 沈哲緯、蕭震洋、羅文俊(2012),「花蓮縣土石流潛勢溪流地文特性初探」,水保技術,7(2):96-105。 17. 周朝富、鄭祈全、陳燕章(1991),「SPOT資料應用於林地被覆型之分類研究」,林業試驗所研究報告季刊,6(3):283-297。 18. 林文賜、林昭遠、黃碧慧、周文杰(2006),「集水區自動劃分模式建立之研究」,中華水土保持學報,37(4):337-354。 19. 林育樞、何學承、蘇苗彬(2013),「應用數值航空攝影測量於坡地災害土砂分布及變異量之推估」,中華水土保持學報,44(4):282-292。 20. 林俐玲、張光宗(2006),「山坡地可利用限度分類標準檢討」,行政院農業委員會水土保持局研究計畫。 21. 林政侑(2012),「應用環境指標劃定集水區地覆類別及熱點區位監測之研究」,國立中興大學水土保持學系碩士論文。 22. 林昭遠(1998),「濱水區植生緩衝帶配置之研究」,中華水土保持學報,29(3):261-272。 23. 林柏君、羅正宗、陳榮坤、劉啟東(2012),「利用根箱探討水稻根系生長之變化」,嘉大農林學報,9(1):17-42。 24. 林庭瑤(2017),「大雨山崩 四川茂縣百人活埋」,聯合報。 25. 林智惠(2003),「膠結不良砂岩在不同應力路徑下之力學行為,國立交通大學土木工程系所碩士論文 26. 邱景升(2008),「應用多元方格網模式比較坡度計算法差異之研究」,地理學報,51:47-63。 27. 洪詮斌、鄭皆達、黃晴曉、黃育珍(2008),「山坡地潛在地滑區土地利用可行性研究-以臺中市大坑地區為例」,水土保持學報,40(2):247-268。 28. 國土測繪中心,2017,http://www.nlsc.gov.tw/LUI/Home/Content. aspx?MUID=7f09a67d-6337-4869-ba02-c4aefd228f6d 29. 國家教育研究院(2002),「雙語辭彙、學術名詞暨辭書資訊網」。 30. 國家實驗研究院(2012),「主題式災害情境地理資訊整合應用」。 31. 張仲民(1987),「普通土壤學」,國立編譯館。 32. 張育誠(2002),「台東縱谷(瑞穗至池上地區)之地電研究」,國立中央大學地球物理研究所碩士論文。 33. 張庭瑜(2015),「環境指標應用於山坡地土地可利用限度查定之研究」,國立中興大學水土保持學系碩士論文 34. 莊智瑋(2010),「環境指標應用於崩塌地植生復育之研究」,國立中興大學水土保持學系博士論文。 35. 許正一、陳尊賢(1994),「地下水位變動與土壤氧化還原形態特徵關係」,土壤肥料通訊,42:21-36。 36. 許振崑、林伯勳、冀樹勇(2012),「多元尺度監測評估石門水庫重點治理集水區整治成效」,水保技術,7(1):43-56。 37. 許國城(2007),「由國土計畫法之立法意涵探詢台灣城鄉空間發展方向」,土地問題研究季刊,98-111。 38. 郭育聰(2001),「非均向電性介質的模擬研究」,國立中正大學應用地球物理研究所碩士論文。 39. 陳宜清、歐陽良炯(2007),「環境敏感指標地圖在臺灣海岸油污清理之應用探討」,科學與工程技術期刊,3(3):13-24。 40. 陳哲俊、陳良健、王蜀嘉、史天元、吳水吉、劉進金、鄭祈全(2007),「航遙測技術在自然資源之應用」,財團法人中正農業科技社會公益基金會研究計畫。 41. 陳博雅(2009),「國土計畫法通過後面臨之課題」,府際關係研究通訊,8:1-3。 42. 陳樹群、翁愷翎、吳俊鋐(2010),「玉峰溪集水區崩塌特性與崩塌體積之探討」,中華水土保持學報,41(3):217-229。 43. 彭文飛(2001),「以位移法分析自然邊坡在地震時之破壞行為的初步探討」,國立成功大學資源工程研究所碩士論文。 44. 彭文飛、王建力、陳時祖、李馨慈(2007),「考慮地震波之地形放大效應製作山崩潛勢圖」,礦冶雜誌,52(1):112-119。 45. 游淳名(2006),「非飽和紅土剪力強度之研究-以林口台地為例」,國立臺北科技大學土木與防災研究所碩士論文。 46. 新北市政府(2016),「水質水量保護區共有幾種?」(http://water.ntpc.gov.tw/News)。 47. 葉世文(2009),「國土空間規劃變革-談國土計畫法的研訂」,政策交流道–政策新知,97-103。 48. 監察院(2002),「水資源之開發、調配及管理問題」,專案調查研究報告。 49. 趙家民、吳仁明(2004),「地理資訊系統應用在土砂災害治理調查與規劃之研究」,中華民國地圖學會會刊,14:115-124 50. 劉守恆(2002),「衛星影像於崩塌地自動分類組合之研究」,國立成功大學地球科學研究所碩士論文。 51. 蔡呈奇(2002),「應用地域分析與地理資訊系統繪製土壤圖以臺灣北部火山灰土壤為例」,國立台灣大學農業化學研究所博士論文。 52. 鄭泰山(1989),「水土保持草類根系研究」,國立中興大學水土保持學系碩士論文。 53. 鄭錦桐、沈哲緯、陳微鈞(2010),「利用多尺度衛星影像評估四川汶川地震引致之土砂災害」,航測及遙測學刊,15(3):205-217。 54. 蕭律生(2017),「四川茂縣山體垮塌 全村百餘人被埋」,大紀元。 55. 蕭震洋、林伯勳、鄭錦桐、辜炳寰、徐偉城、冀樹勇(2009),「應用光達技術進行集水區土砂運移監測及攔阻率評估」,中興季刊,105:17-25。 56. 賴俊榮、何世華(2011),「環境敏感區位考量下之土地利用規劃」,水土保持學報,43(4):429-448。 57. 賴進貴(1996),「數值高度模型與地形計測研究資料解析度問題」,地理學報,20:61-73。 58. 營建署(2016),https://www.cpami.gov.tw/最新消息/業務新訊/18937-「環境敏感地區查詢作業單一窗口機制」專區.html 59. 謝武雄(2016),「八成七處山坡地保護區 龜山人修屋被罰」,自由時報。 60. 蘇倫平、郭鴻裕(2011),「台灣土壤資源與農地土地覆蓋圖資瀏覽查詢系統」,農業資源科技應用發展電子報,http://soilsurvey.tari.gov.tw/SOA/home.html。 61. 蘇潘(2017),「利用多期Landsat影像軌跡為基礎探討環境干擾之回復力指標」,國立中興大學水土保持學系博士論文。 62. Beven, K. J., M. J. Kirkby (1979) 'A physically based, variable constributing area model of basin hydrology.' Hydrological Sciences Bulletin, 24(1): 43-69. 63. Boer, M., G. D. Barrio, J. Puigdefiibregas (1996) 'Mapping soil depth classes in dry Mediterranean areas using terrain attributes derived from a digital elevation model.' Geoderma, 72: 99-118. 64. Bourennane, H., D. King, A. Couturier (2000) 'Comparison of kriging with external drift and simple linear regression for prediction soil horizon thickness with different sample densities.' Geoderma, 97: 255-271. 65. Cai, D. L., K. Fraedrich, F. Sielmann, Y. N. Guan, S. Guo, L. Zhang, X. H. Zhu (2014) 'Climate and vegetation: An ERA-Interim and GIMMS NDVI analysis.' Journal of Climate, 27: 5111-5118. 66. Carson, M. A., M. J. Kirkby (1972) 'Hillslope form and process.' Lodon Cambridge University Press. 67. Conigley, C. M., H. Lally, D. Little, P. O'Dea, M. Kelly-Quinn (2017) 'The influence of aquatic buffer zone vegetation on river macroinvertebrate communities.' Forest Ecology and Management, 400, 621-630. 68. Cromley, R. (1992) 'Digital Cartography.' Prentice Hall, New York. 69. David, L., M. R. Bill (2003) '4-H land judging in Kentucky.' University of Kentucky College of Agriculture. 70. Delmonaco, G., G. Leoni, C. Margottini, C. Puglisi, D. Spizzichino (2003) 'Large scale debris-flow hazard assessment: A geotechnical approach and GIS modelling.' Natural Hazards and Earth System Sciences, 3: 443455. 71. Dietrich, W. E., M. L. Hus, D. R. Montgomery (1995) 'A process-based model for colluvial soil depth and shallow landsliding using digital elevation data.' Hydrological Process, 9: 383-400. 72. Doerge, T. (1999) 'Management zone concepts. The Site-Specific Management Guidelines.' Potash and Phosphate Institute / South Dakota State Univerity. 73. Doolittle, J. J., D. D. Malo (2002) 'Land judging in South Dakota.' South Dakota State University College of Agriculture & Biological Sciences. 74. Federal Remediation Technologies Roundtable (2013) 'FRTR Glossary.' https://frtr.gov/. 75. Fisher, R. A. (1936) 'The use of multiple measurements in taxonomic problems.' Annals of Human Genetics, 7(2): 179-188. 76. Forman, R. T. T. (1995) 'Land Mosaics: The Ecology of Landscapes and Regions.' Island Press. 77. Foster, G. R. (1982) 'Modeling the erosion prrcess.' The American Society of Agricultural Engineers Monograph, 5, 297-380. 78. Fraisse, C., K. Sudduth, N. Kitchen, J. Fridgen (1999) 'Use of unsupervised clustering algorithms foir delineating within-field management zones. ASAE International Meeting, Toronto, Canada.' St. Joseph: American Society of Agricultural Engineers. 79. Franzen, D., N. Peterson (2003) 'Land and homesite judging in NorthDakota.' North Dakota State University. 80. Heimsath, A. M., W. E. Dietrich, K. Nishiizumi, R. C. Finkel (1997) 'The soil production and landscape equilibrium.' Nature, 388: 358-361. 81. Ho, J. Y., T. L. Kwan, T. C. Chang, Z. Y. Wang, Y. H. Liao (2012) 'Influences of spatial distribution of soil thickness on shallow landslide prediction.' Engineering Geology, 124: 38-46. 82. Hornung, A., R. Khosla, R. Reich, D. Inman, D. G. Westfall (2006) 'Comparison of site-specific management zones: Soil-color-based and yield-based.' Agronomy Journal, 98: 407-415. 83. Hornung, M. (1990) 'Measurement of nutrient losses resulting from soil erosion.' Elsevier Applied Science Publishers Ltd., Amsterdam. 84. Huang, W. C., Y. Y. Lee (2016) 'Strategic planning for land use under extreme climate changes: a case study in Taiwan.' Sustainability, 8(53): 1-17. 85. Jenson, S. K., J. O. Domingue (1988) 'Extracting topographic structure from digital elevation data for geographic information system analysis.' Photogrammetric Engineering and Remote Sensing, 54(11): 1593-1600. 86. Johnson, D. E. (1998) 'Applied multivariate methods for data analysts.' Duxbury Press, Pacific Grove. 87. Keith, C. (2004) 'Instructions on Land Judging in Mississippi.' Mississippi State University Extension Center. 88. Kojima, T., K. Saito, T. Kakai, Y. Obata, T. Saigusa (1971) 'Circularity ratio. A certain quantitative expression for the circularity of a round figure.' Okajimas Folia Anatomica Japonica, 48(2): 153-61. 89. Krezoner, W. R., K. R. Olson, W. L. Banwart, D. L. Johnson (1989) 'Soil, landscape , and erosion relationships in northwest Illinois watershed.' Soil Science Society American Journal, 53: 1763-1711. 90. Kuusemets, V., Ü. Mander, (1999) 'Ecotechnological measures to control nutrient losses from catchments.' Water Science and Technology, 40 (10): 195-202. 91. Lark, R., J. Stafford (1997) 'Classification as a first step in the interpretation of temporal and spatial variation of crop yield.' Annals of Applied Biology, 130(1): 111-121. 92. Lee, K. T., J. Y. Ho (2009) 'Prediction of landslide occurrence based on slope-instability analysis and hydrological model simulation.' Journal of Hydrology, 375: 489-497. 93. Li, Y., Z. Shi, F. Li, H. Li (2007) 'Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land.' Computers and Electronics in Agriculture, 56(2): 174-186. 94. Loughran, R. J. (1989) 'The measurement of soil erosion.' Progress in Physical Geography, 13(2): 216-232. 95. McBratney, A., B. Whelan, T. Ancev, J. Bouma (2005) 'Future directions of precision agriculture.' Precision Agriculture, 6: 7-23. 96. McGarigal, K., B. Marks (1995) 'Spatial pattern analysis program for quantifying landscape structure.' Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 97. Ministry of Agriculture, Fisheries and Food (1988) 'Agricultural Land Classification of England and Wales.' 98. Moore, I. D., J. R. Burch (1986) 'Sediment transport capacity of sheet and rill flow: Application of unit stream power theory.' Water Resource Research, 22: 1350-1360. 99. Natural Resources Conservation Service Wisconsin (2009) 'Soil study and land evaluation materials for land judging competitions.' 100. O'Callaghan, J. F., D. M. Mark (1984) 'The extraction of drainage networks from digital elevation data.' Computer Graphics and Image Processing, 28: 323-344. 101. Office of National Environmental Board (1995) http://www.onep.go. th/neb2/. 102. Pedroso, M., J. Taylor, B. Tisseyre, B. Charnomordic, S. Guillaume (2010) 'A segmentation algorithm for the delineation of agricultural management zones.' Computers and Electronics in Agriculture, 70: 199-208. 103. Raina, P., D. C. Joshi, A. S. Kolarkas (1991) 'Land degradation mapping by remote sensing in the arid region of India.' Soil Use and Management, 7(1): 47-52. 104. Renard, K. G., G. R. Foster, G. A. Weesier, G. P. Porter, (1991) 'RUSLE: revised universal soil loss equation.' Journal of Soil and Water Conservation, 46(1): 30-33. 105. Reshmidevi, T. V., T. I. Eldho, R. Jana (2009) 'A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds.' Agricultural Systems, 101: 101-109. 106. Ritchie, J. C., J. B. Murphey (1990) 'Application of radioactive fallout caesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review.' Journal of Environmental Quality, 19(2): 215-33. 107. Ritchie, J. C., J. B. Murphey, E. H. Grissinger, J. D. Garbrecht (1993) 'Monitoring streambank and gully erosion by airborne laser.' In: Hadley, R. F. and Mizuyama, T. (eds.) Sediment Problems: Strategies for Monitoring, Prediction, and Control, International Association of Hydrological Sciences Publication, 217,161-166. 108. Robinson, A. R. (1977) 'Relationships between soil erosion and sediment delivery.' Erosion and Solid Matter Transport In Inland Water Symposium, Paris. 109. Rouse, J. W., R. H. Haas Jr., J. A. Schell, D. W. Deering (1974) 'Monitoring vegetation systems in the great plains with ERTS.' In: NASA SP-351, 3rd ERTS-1 Symposium, Washington. 110. Saulnier, G. M., C. Obled, K. Beven (1997) 'Analytical compensation between DTM grid resolution and effective values of saturated hydraulic conductivity within the TOPMODEL framework.' Hydrological Processes, 11(9): 1331-1346. 111. United States Department of Agriculture (2011) 'National Agricultural Land Evaluation and Site Assessment (LESA) Handbook.' 112. Verbyla, D. L. (1995) 'Satellite Remote Sensing of Natural Resources.' Lewis publishers. 113. Vrindts, E., A. Mouazen, M. Reyniers, K. Maertens, M. Maleki, H. Ramon, J. de Baerdemaeker (2005) 'Management zones based on correlation between soil compaction, yield and crop data.' Biosystems Engineering, 92(4): 419-428. 114. Walling, D. E. (1983) 'The sediment delivery problem.' Journal of Hydrology, 65(1-3): 209-237. 115. Walling, D. E. (1988) 'Measure sediment yield from river basin.' Soil Erosion Research Methods, 39-80. 116. Wilson, J. L., J. C. Gallant (2000) 'Terrain analysis,' John Wiley & Son, Inc., Hoboken. 117. Young, R. A., C. A. Onstad (1987) 'Soil Erosion: Measurement and Prediction.' In: Harlin, J. M. and Berardi, C. M. (eds.) Agricultural Soil Loss: Process, and Pros Pects, Boulder, Colorado: Westview, 91-111. 118. Ziadat, F. M. (2010) 'Prediction of soil depth from digital terrain data by integrating statistical and visual approaches.' Pedosphere 20(3): 361–367.
摘要: 
For effective management of agriculture utilization on the slopeland, the competent authority of soil and water conservation had worked out the slopeland utilization classification (SUC). The criteria of SUC including slope, effective soil depth, erosion degree and parent-rock are used to delineate the spatial distribution of optimal utilization for agricultural, animal husbandry, forestry and strengthened conservation lands. According to SUC regulation, the interpretation of SUC should follow the results of field investigation. However, the constraints of field investigation occur frequently due to labor and time consuming in the current SUC work. Fortunately, the techniques of the remote sensing and huge big data become advantage and popular. How to select the optimal data for SUC criteria extraction is important. The original purpose of SUC was promulgated for agricultural production. However, under the changes of land use, policy and climate, the main works of soil and water conservation should be adjusted from agricultural production to environmental conservation and/or disaster prevention. Therefore, the adjustments of SUC are one of the crucial issues. Besides, the slope calculation was based on cadaster unit so the area of steep slope in a cadaster unit with heterogeneous slope was easy to be flatted which caused insufficient delineation of conservation land and will result in potential of soil and water loss on the slopeland. In addition, the frequent cases of cadaster mergence and segmentation increase the difficulty of management. In response to slopeland disasters prevention thinking (DPT), the cadaster unit on slopeland management should be replaced.
Under consideration of current regulation and SUC work, this study proposed two stages of advance research. In the first stage, the current SUC criteria were extracted by big data for the purpose of labor reduction on field investigation. Slope was calculated by digital elevation model (DEM); effective soil depth was estimated by soil map, land use map and soil depth index; erosion degree and parent-rock were interpreted by land use map. The interpretation results of four criteria were verified with investigated cadaster provided by Soil and Water Conservation Bureau (SWCB) from 2011 to 2016. The suitability of SUC derived from multiscale big data was discussed. In the second stage, the cadaster unit will be replaced under consideration of Spatial Planning Act and effective management slopeland. In response to DPT, slope derived from topographic homogeneous unit and factors of buffer zone and/or landslide sites were considered to replace the current criteria for establishing SUC with DPT.
The results interpreted by current criteria showed that the well fitness of slope was calculated by 5-meter DEM; effective soil depth can be indirectly estimated by soil depth index even though the soil map in Taiwan was incomplete; erosion degree and parent-rock was dynamic change with disaster events so the disaster map was recommanded to interpret the land of strengthened conservation. Results of SUC with DPT shows that: (1) SUC map in Taiwan should be established without cadaster and then can be added value by cadaster to avoid the interference of cadaster change; (2) the criteria of knickpoint and buffer zone were added for disaster prevention; (3) under consideration of functional zone in Spatial Planning Act, suitable land for forestry defined by topographic homogeneous unit can be a reference to delineate the environmental conservation zones.

山坡地土地可利用限度分類乃水土保持主管機關為管理坡地農業使用而訂定,將山坡地依坡度、土壤有效深度、土壤沖蝕程度、母岩性質等查定基準,分為宜農牧地、宜林地以及加強保育地。依山坡地土地可利用限度查定工作要點之規定,山坡地土地可利用限度分類之判定須以現場勘查結果為依據,然查定人力不足致使工作耗時費工,幸得大數據建置及遙測技術已逐趨成熟,如何善用大數據萃取查定基準有其需要。山坡地土地可利用限度分類制定之初係以農業生產考量,然隨著土地利用、政策及氣候之變遷,水土保持工作方向漸由農業生產轉為保育防災,因此山坡地土地可利用限度分類基準有修正之必要。此外;現況之坡度係以地籍為分析單元,在地形非均勻坡時;地籍單元內之陡峭區位易被平緩,造成保育地劃定不足,增加坡地水土流失之虞,加上地籍合併分割易造成查定更新之困難,因此在防災思維下,山坡地管理宜跳脫地籍框架。
在現行法令及查定工作之考量下,本研究提出兩階段精進之研究,第一階段考量為精簡野外調查人力,利用大數據萃取現有查定基準,以數值高程模型計算坡度;土壤有效深度採用土壤圖、土地利用圖及土壤深度指標進行推估;土壤沖蝕程度及母岩性質則以土地利用圖加以判定,四項基準判定結果以水土保持局提供之2011~2016年全臺查定成果之地籍進行驗證,探討多尺度大數據圖資運用於山坡地土地可利用限度分類之適宜性。第二階段考量國土計畫法之施行;以及山坡地有效之管理,特跳脫地籍框架,在防災思維下,四項查定基準除保留地形均質區為坡度單元,另增加緩衝帶及崩塌區位等因子取代既有查定基準,建置具防災思維之山坡地土地可利用限度分類。
善用大數據依循原有查定基準之分析結果,顯示不同數值地形模型坡度之計算,以5m x 5m解析度在實際運用上較適宜;因台灣土壤圖未建置完整,土壤有效深度可由土壤深度指標間接推估;土壤沖蝕程度及母岩性質係隨災害事件動態變化,宜以災害地圖作為加強保育地之判定依據。打破現有查定基準之分析結果,顯示(1)跳脫地籍框架,事先產出全台山坡地土地可利用限度分類圖資,再利用地籍圖作加值利用,可避免查定工作受地籍變動影響;(2)加入遷急線及河道緩衝等查定基準,可增加自主防災確保山坡地災害管理之落實;(3)考量國土計畫法之功能分區,地形均質區判定之宜林地區位,可作為國土保育地區劃定之參考。
URI: http://hdl.handle.net/11455/95910
Rights: 同意授權瀏覽/列印電子全文服務,2021-02-05起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8101042001-1.pdf7.94 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.