Please use this identifier to cite or link to this item:
標題: 植物病蟲害嚴重度估計的指標與方法之研究
Research on the indices and methods used to estimate severity of plant disease and pest damage
作者: Hung-I Liu
關鍵字: disease severity index;DSI;ordered categorical scale;value selection of the interval;treatment comparison;image analysis;leaf damaged area;病害嚴重度指標;順序類別尺度;不同類別尺度;等級代表數值的選擇;處理比較;影像分析;取食面積之嚴重度
引用: APS. 2017. Information for authors. Phytopathology. American Phytopathological Society. Bakr, E. M. 2005. A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. Journal of applied Entomology. 129(3): 173-175. Bautista, R. C., E. A. Heinrichs, and R. S. Rejesus. 1984. Economic injury levels for the rice leaffolder Cnaphalocrocis medinalis (Lepidoptera: Pyralidae): Insect infestation and artificial leaf removal. Environmental Entomology. 13: 439-443. Bock C. H., B. W. Wood, and T. R. Gottwald. 2013a. Pecan scab severity - Effects of assessment methods. Plant Disease. 97: 675-684. Bock, C. H., A. Z. Cook, P. E. Parker, and T. R. Gottwald. 2009a. Automated image analysis of the severity of foliar citrus canker symptoms. Plant Disease. 93: 660-665. Bock, C. H., B. W. Wood, F. van den Bosch, S. Parnell, and T. R. Gottwald. 2013b. The effect of Horsfall-Barratt category size on the accuracy and reliability of estimates of pecan scab severity. Plant Disease. 97: 797-806. Bock, C. H., G. Poole, P. E. Parker, and T. R. Gottwald. 2010a. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences. 29: 59-107. Bock, C. H., P. E. Parker, A. Z. Cook, and T. R. Gottwald. 2008. Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Disease. 92: 530-541. Bock, C. H., P. E. Parker, A. Z. Cook, T. Riley, and T. R. Gottwald. 2009b. Comparison of assessment of citrus canker foliar symptoms by experienced and inexperienced raters. Plant Disease. 93: 412-424. Bock, C. H., T. R. Gottwald, P. E Parker, A. Z. Cook, F. Ferrandino, S. Parnell, and F. van den Bosch. 2009c. The Horsfall-Barratt scale and severity estimates of citrus canker. European Journal of Plant Pathology. 125: 23-38. Bock, C. H., T. R. Gottwald, P. E. Parker, F. Ferrandino, S. Welham, F. van den Bosch, and S. Parnell. 2010b. Some consequences of using the Horsfall-Barratt scale for hypothesis testing. Phytopathology. 100: 1031-1041. Bock, C. H., K. S. Chiang, E. M. Del Ponte. 2016. Accuracy of plant specimen disease severity estimates: concepts, history, methods, ramifications and challenges for the future. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 11, No. 032. Cai, K., D. Gao, S. Luo, R. Zeng, J. Yang, and X. Zhu. 2008. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiologia Plantarum. 134: 324-333. Campbell, C. L. and L. V. Madden. 1990. Introduction to Plant Disease Epidemiology. New York, USA: John Wiley and Sons. Cardoso, J. E., A. A. Santos, A. G. Rossetti, and J. C. Vidal. 2004. Relationship between incidence and severity of cashew gummosis in semiarid north-eastern Brazil. Plant Pathology. 53: 363-367. Carlin B. P. and T. A. Louis. 2000. Bayes and Empirical Bayes Methods for Data Analysis. 2nd edn. Boca Raton, FL, USA: Chapman and Hall/CRC Press. Chaerani, R., R. Groenwold, P. Stam, and R. E. Voorrips. 2007. Assessment of early blight (Alternaria solani) resistance in tomato using a droplet inoculation method. Journal of General Plant Pathology. 73(2): 96-103. Chaube, H. S. and U. S. Singh. 1991. Plant Disease Management: Principles and Practices. Boca Raton, FL, USA: CRC Press. Chen, D. G. and K. E. Peace. 2013. Applied meta-analysis with R. Boca Raton (Florida): CRC Press. Chester K. S. 1950. Plant disease losses: their appraisal and interpretation. Plant Disease Reporter. Supplement 190-198 (S193): 190-362. Chiang, K. S., C. H. Bock, I. H. Lee, M. El Jarroudi, and P. Delfosse. 2016b. Plant disease severity assessment - how rater bias, assessment method and experimental design affect hypothesis testing and resource use efficiency. Phytopathology. 106: 1451-1464. Chiang, K. S., C. H. Bock, M. El Jarroudi, P. Delfosse, H. I. Lee, and H. I. Liu. 2016a. Effects of rater bias and assessment method on disease severity estimation with regard to hypothesis testing. Plant Pathology. 65: 523-535. Chiang, K. S., H. I. Liu, and C. H. Bock. 2017a. A discussion on disease severity index values. Part I: warning on inherent errors and suggestions to maximise accuracy. Annals of Applied Biology. 171: 139-154. Chiang, K. S., H. I. Liu, J. W. Tsai, J. R. Tsai, and C. H. Bock. 2017b. A discussion on disease severity index values. Part II: using the disease severity index for null hypothesis testing. Annals of Applied Biology. 171: 490-505. Chiang, K. S., S. C. Liu, C. H. Bock, and T. R. Gottwald. 2014. What interval characteristics make a good categorical disease assessment scale? Phytopathology. 104: 575-585. Coats, B. 2003. Global rice production. In Rice origin, history, technology and production (pp. 247-470). Wiley, Hoboken. Counce, P. A., T. C. Keisling, and A. J. Mitchell. 2000. A uniform, objective, and adaptive system for expressing rice development. Crop Science. 40: 436-443. Dangar, T. K. 2008. Infectivity and ecology of Pseudomonas spp. from natural epizootics in the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) in India. Biocontrol Science and Technology. 18: 241-253. Diaz, G., E. Romero, J. Boyero, and N. Malpica. 2009. Recognition and quantification of area damaged by Oligonychus perseae in avocado leaves. In Iberoamerican Congress on Pattern Recognition (pp. 677-684). Springer, Berlin, Heidelberg. Forbes, G. A. and J. T. Korva. 1994. The effect of using a Horsfall-Barratt scale on precision and accuracy of visual estimation of potato late blight severity in the field. Plant Pathology. 43: 675-682. Fu, L. Y., Y. G. Wang, and C. J. Liu. 2012. Rank regression for analyzing ordinal qualitative data for treatment comparison. Phytopathology. 102: 1064-1070. Gafni, A., C. E. Calderon, R. Harris, K. Buxdorf, A. Dafa-Berger, E. Zeilinger-Reichert, and M. Levy. 2015. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science. 6: 132. Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 1995. Bayesian Data Analysis. Boca Raton, FL, USA: Chapman and Hall/CRC Press. Ghose, L., F. A. Neela, T. C. Chakravorty, M. R. Ali, and M. S. Alam. 2010. Incidence of leaf blight disease of Mulberry plant and assessment of changes in amino acids and photosynthetic pigments of infected leaf. Plant Pathology Journal. 9: 140-143. Grau, C. R., V. L. Radke, and F. L.Gillespie. 1982. Resistance of soybean cultivars to Sclerotinia sclerotiorum. Plant Disease. 66: 506-508. Hartung, K. and H. P. Piepho. 2007. Are ordinal rating scales better than percent ratings? A statistical and 'psychological' view. Euphytica. 155: 15-26. Horsfall, J. G. 1945. Fungicides and their action. Annales Cryptogamici et Phytopathologici Vol II. Chronicles of Botany, Waltham, MA. Horsfall, J. G. and R. W. Barrat. 1945. An improved grading system for measuring plant disease. Phytopathology. 35: 655 (Abstract). Huang, Y. H., R. C. Wang, C. H. Li, C. W. Zuo, Y. R. Wei, L. Zhang, and G. J. Yi. 2012. Control of Fusarium wilt in banana with Chinese leek. European Journal of Plant Pathology. 134: 87-95. Hunter J. E., F. L. Schmidt. 2004. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings. 2nd ed. Thousand Oaks, CA, USA: Sage Publications Inc. Hunter, R. E. 1983. Influence of scab on late season nut drop of pecans. Plant Disease. 67: 806-807. Hunter, R. E. and D. D. Roberts. 1978. A disease grading system for pecan scab. The Pecan Quarterly. 12: 3-6. IRRI. 2002. Rice Almanac: Source book for one of the most important economic activities on earth. CABI Publishing, Oxon, UK. IRRI. 2013. Standard Evaluation System for Rice (SES). 5th ed. International Rice Research Institute. Manila, Philippines. Jansky, S., S. Austin-Phillips, and C. McCarthy. 1999. Colorado potato beetle resistance in somatic hybrids of diploid interspecific Solanum clones. HortScience. 34(5): 922-927. Kobriger, K. M. and D. J. Hagedorn. 1983. Determination of bean root rot potential in vegetable production fields of Wisconsin's central sands. Plant Disease. 67: 177-178. Koitabashi, M. 2005. New biocontrol method for parsley powdery mildew by the antifungal volatiles-producing fungus Kyu-W63. Journal of General Plant Pathology. 71: 280-284. Kolkman J. M. and J. D. Kelly. 2002. Agronomic traits affecting resistance to white mold in common bean. Crop Science. 42: 693-699. Kora, C., M. R. McDonald, and G. J. Boland. 2005. Epidemiology of Sclerotinia rot of carrot caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology. 27: 245-258. Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied Linear Statistical Models, Ed. 5. McGraw-Hill, New York. Lamari, L. 2002. ASSESS: Image Analysis Software for Plant Disease Quantification. St Paul, MN, USA: APS Press. Lazarovits G., J. Hill, G. Patterson, K. L. Conn, and N. S. Crump. 2007. Edaphic soil levels of mineral nutrients, pH, organic matter, and cationic exchange capacity in the geocaulosphere associated with potato common scab. Phytopathology. 97: 1071-1082. Lin, L. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 45: 255-268. Lin, L. 2008. Overview of agreement statistics for medical devices. Journal of Biopharmaceutical Statistics. 18: 26-144. Lindow, S. E. and R. R. Webb. 1983. Quantification of foliar plant disease symptoms by microcomputer-digitized video image analysis. Phytopathology. 73: 520-524. Liu, S. C., K. S. Chiang, C. H. Lin, W. C. Chung, S. H. Lin, and T. C. Yang. 2011. Cost analysis in choosing group size when group testing for Potato virus Y in the presence of classification errors. Annals of Applied Biology. 159: 491-502. Lowman, M. D. and H. Heatwole. 1992. Spatial and temporal variability in defoliation of Australian eucalypts. Ecology. 73: 129-142. Madden L. V., G. Hughes, and F. van den Bosch. 2007. The Study of Plant Disease Epidemics. St Paul, MN, USA: APS Press. Madden, L. V, and P. A. Paul. 2011. Meta-analysis for evidence synthesis in plant pathology: An overview. Phytopathology. 101: 16-30. Manikandan, R., N. Balakrishnan, D. Sudhakar, and V. Udayasuriyan. 2016. Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis). 3 Biotech. 6: 1-10. Martin, D. P. and E. P. Rybicki. 1998. Microcomputer-based quantification maize streak symptoms in Zea mays. Phytopathology. 88: 422-427. McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. 2nd edn. London: Chapman and Hall. Mirik, M., G. J. Michels, S. Kassymzhanova-Mirik, N. C. Elliott, and R. Bowling. 2006. Hyperspectral spectrometry as a means to differentiate uninfested and infested winter wheat by greenbug (Hemiptera: Aphididae). Journal of Economic Entomology. 99: 1682-1690. Mohapatra, P., N. Ponnurasan, and P. Narayanasamy. 2009. Tribal pest control practices of Tamil Nadu for sustainable agriculture. Indian Journal of Traditional Knowledge. 8: 208-224. Nita, M., M. A. Ellis, and L. V. Madden. 2003. Reliability and accuracy of visual estimation of Phomopsis leaf blight of strawberry. Phytopathology. 93: 995-1005. Nitzan, N., T. F. Cummings, D. A. Johnson, J. S. Miller, D. L. Batchelor, C. Olsen, R. A. Quick, and C. R. Brown. 2008. Resistance to root galling caused by the powdery scab pathogen Spongospora subterranea in potato. Plant Disease. 92: 1643-1649. Nsabiyera, V., M. Ochwo-Ssemakula, and P. Sseruwagi. 2012. Hot pepper reaction to field diseases. African Crop Science Journal. 20 (suppl. 1): 77-97. Nutter, F. W. and P. D. Esker. 2006. The role of psychophysics in phytopathology: The Weber-Fechner law revisited. European Journal of Plant Pathology. 114(2): 199-213. Nutter F. W., and P. M. Schultz. 1995. Improving the accuracy and precision of disease assessments: selection of methods and use of computer aided training programs. Canadian Journal of Plant Pathology. 17: 174-184. Nutter, F. W., P. S. Teng, and F. M. Shokes. 1991. Disease assessment terms and concepts. Plant Disease. 75: 1187-1188. Padmavathi, C., G. Katti, A. P. Padmakumari, S. R. Voleti, and L. V. Subba Rao. 2013. The effect of leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) injury on the plant physiology and yield loss in rice. Journal of Applied Entomology. 137: 249-256. Perović, D. J., M. L. Johnson, B. Scholz, and M. P. Zalucki. 2008. The mortality of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) neonate larvae in relation to drop-off and soil surface temperature: the dangers of bungy jumping. Australian Journal of Entomology. 47: 289-296. Prior, K. M. and J. J. Hellmann. 2010. Impact of an invasive oak gall wasp on a native butterfly: a test of plant-mediated competition. Ecology. 91: 3284-3293. R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL Raupach, G. S., L. Liu, J. F. Murphy, S. Tuzun, and J. W. Kloepper. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Disease. 80: 891-894. Redman, C. E., E. P. King, and I. F. Brown. 1969. Tables for converting Barrett and Horsfall rating scores to estimated mean percentages. Indianapolis, IN, USA: Elanco Products. Ruppel, E. G. and R. J. Hecker. 1982. Increased severity of Rhizoctonia root rot in sugar beet treated with systemic insecticides. Crop Protection. 1: 75-81. Salamati, S. and A. M. Tronsmo. 1997. Pathogenicity of Rhynchosporium secalis isolates from Norway on 30 cultivars of barley. Plant Pathology. 46: 416-424. Schwanck, A. A. and E. M. Del Ponte. 2014. Accuracy and reliability of severity estimates using linear or logarithmic disease diagram sets in true colour or black and white: a study case for rice brown spot. Journal of Phytopathology. 162: 670-682. Selvapandiyan, A., V. S. Reddy, P. A. Kumar, K. K. Tewari, and R. K. Bhatnagar. 1998. Transformation of Nicotiana tabacum with a native cry1Ia5 gene confers complete protection against Heliothis armigera. Molecular Breeding. 4: 473-478. Selvaraju, K., P. Shanmugasundaram, S. Mohankumar, M. Asaithambi, and R. Balasaraswathi. 2007. Detection of quantitative trait locus for leaffolder (Cnaphalocrocis medinalis (Guenée)) resistance in rice on linkage group 1 based on damage score and flag leaf width. Euphytica. 157(1-2): 35-43. Shah D. A., and L. V. Madden. 2004. Nonparametric analysis of ordinal data in designed factorial experiments. Phytopathology. 94: 33-43. Shanmugam, T. R., R. Sendhil, and V. Thirumalvalavan. 2006. Quantification and prioritization of constraints causing yield loss in rice (Oryza sativa) in India. Agricultura Tropica et Subtropica. 39: 194-201. Sherwood, R. T., C. C. Berg, M. R. Hoover, and K. E. Zeiders. 1983. Illusions in visual assessment of Stagonospora leaf spot of orchardgrass. Phytopathology. 73: 173-177. Skamnioti P. and S. J. Gurr. 2009. Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology. 27: 141-150. Snedecor, G. W., and W. G. Cochran. 1989. Statistical Methods. 8th ed. Iowa State University Press, Ames. Steel, R. G. D., J. H. Torrie, and D. A. Dickey. 1997. Principles and procedures of statistics: a biometrical approach. 3rd ed. WCB/McGraw-Hill, New York, NY. Stevens, S. S. 1946. On the theory of scales of measurement. Science. 103: 677-680. Stovold, G. E. and H. J. P. Smith. 1991. The prevalence and severity of diseases in the coastal soybean crop of New South Wales. Australian Journal of Experimental Agriculture. 31: 545–550. Vieira, R. F., T. J. Paula Júnior, H. Teixeira, and J. E. D. S. Carneiro. 2010. White mold management in common bean by increasing within-row distance between plants. Plant Disease. 94: 361-367. Vieira, R.F., T. J. Paula J´unior, J. E. S. Carneiro, H. Teixeira, T. F. N. Queiroz. 2012. Management of white mold in type III common bean with plant spacing and fungicide. Tropical Plant Pathology. 37: 95-101. Xie, W., K. Yu, K. P. Pauls, and A. Navabi. 2012. Application of image analysis in studies of quantitative disease resistance, exemplified using common bacterial blight-common bean pathosystem. Phytopathology. 102: 434-442. Yadav, N. V., S. M. Vos, C. H. Bock, and B. W. Wood. 2013. Development and validation of standard area diagrams to aid assessment of pecan scab symptoms on fruit. Plant Pathology. 62: 325-335. Yen, F. C. 1981. Studies on the population dynamic and optimal control time of rice leaf roller. Bulletin of Tainan District Agricultural Improvement Station. 15: 81-93. (in Chinese)
植物「病害嚴重度指標」是指以單一數值來說明單株或數個植物樣本之整體病害嚴重度,通常是由順序類別尺度之等級所計算而得,這些尺度的等級是由病害面積(百分比數值形式)劃分而得。傳統上,「病害嚴重度指標」(%)被計算為= [總合 (類別頻率× 每個類別之等級)] / [(全部株樹) × (最大之病害嚴重度指標)] × 100,植物病理學家和其他專業人員利用這些等級之數據,計算得到「病害嚴重度指標」並接續進行處理比較。然而,已有多個研究指出,類別尺度的劃分,對估計病害嚴重程度的正確性及精確性有很大的影響。因此,本論文的第一個目標,是探究不同類別尺度(即病害嚴重度之劃分區間是否等距及區間寬度)以及等級代表數值的選擇(即該類別的等級次序數或組中點值),在「病害嚴重度指標」估計以及後續進行處理比較的影響。
本論文的第二個目標是為蟲害取食面積之嚴重度估計,提供另一個可行的替代方法。傳統上的人工方法是利用方格紙來描繪和測量蟲害取食面積,但這個方法可能耗費較多的時間和勞力;為了提供更有效率的測量方法,本研究藉由ASSESS 2.0以影像分析來測量蟲害取食面積(這裡以水稻瘤野螟為例),並利用Lin的一致性相關係數(ρc)來確認ASSESS2.0測量結果的正確性和精確性。結果顯示影像分析的測量結果與人工方法(視為黃金標準)具有高度一致性(ρc高於0.983),且影像分析至少減少29%的測量時間;因此,藉由ASSESS 2.0所進行之影像分析,將可推薦作為測量水稻瘤野螟取食稻葉面積的工具。

The accuracy and precision of estimating disease severity or pest damage are among the most important foundation for research on plant protection. This thesis explores how to improve the accuracy and precision of estimating the disease severity index (DSI) and of the measurement of the pest damaged area.
The DSI is a single number for summarizing the total effect of the disease on a single plant or a small sample of plants. The DSI has most often been used with data based on a special type of ordinal scale [e.g. the Horsfall-Barratt (H-B) scale] comprising a series of consecutive ranges of defined numeric intervals, generally based on the percent area of symptoms present on the specimen(s). The traditional DSI is calculated as DSI (%) = [sum (class frequency × score of rating class)] / [(total number of plants) × (maximal disease index)] × 100. Plant pathologists and other professionals use ordinal scale data in conjunction with a DSI for treatment comparisons. However, several previous studies have demonstrated that different types of ordinal scale greatly influence the accuracy and precision of estimating disease severity. Therefore, the first objective of this thesis is to investigate the effects on both of the different scales (i.e. those having equal or unequal classes, or different widths of intervals) and of the selection of values for scale intervals (i.e. the ordinal grade for the category or the midpoint value of the interval) on the DSI estimates made for treatment comparison.
For the DSI estimates, the finding is that the traditional DSI is particularly prone to overestimation when using the above formula if the midpoint values of the rating class are not considered. Moreover, the results of the simulation studies show that, compared with other methods tested in this study, if rater estimates are unbiased, than the most accurate method for estimation of a DSI is to use the midpoint of the severity range for each class in an amended 10% ordinal scale (an ordinal scale based on a 10% linear scale emphasizing severities ≤50% disease, with additional grades at low severities). As for biased conditions, the accuracy for calculating DSI estimates will depend mainly on the degree and direction of the rater bias relative to the actual mean value. Hence reducing rater-related bias is critical to minimizing the introduction of additional errors into the progress of calculating the DSI.
For the treatment comparison, the principal factor determining the power of the hypothesis test is the nature of the intervals, not the selection of values for ordinal scale intervals (i.e. not the mid-point or ordinal grade). Although using the percent scale is always preferable, using an ordinal scale for assessment of disease severity has its practical value with regard to implementation and feasibility. When the DSI is used, it is recommended that an amended 10% category scale should be chosen. This can provide accuracy for estimating the disease severity and optimal power for hypothesis testing.
The second objective of this thesis is to provide an alternative for investigating estimates of pest damage severity. Traditionally, the manual approach uses grid paper to depict and measure the pest damaged area, but it could take relatively more time and labor. To provide a more economical measurement method, image analysis via ASSESS 2.0 can be used to measure damaged leaf area - the rice leaf folder as an example. The accuracy and precision of measurement by ASSESS 2.0 are determined with Lin's concordance correlation coefficient (ρc). This result shows that measurement of image analysis is highly consistent (ρc higher than 0.983) with the manual approach, which is regarded as the gold standard. In addition, the image analysis can reduce measurement time by at least 29%. Thus, image analysis via ASSESS 2.0 can be recommended as a tool for measuring leaf damaged area of rice leaf folder.
Rights: 同意授權瀏覽/列印電子全文服務,2018-01-31起公開。
Appears in Collections:農藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-107-8098031005-1.pdf6.86 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.