Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95999
標題: Improved productivity of bacterial cellulose using sorghum distillery residue extract as basal medium in a static bioreactor
以高粱酒糟為基質使用靜置培養系統提高生產細菌纖維素之產率
作者: Ming-An Hsu
許明晏
關鍵字: 細菌纖維素;高粱酒糟萃取液;Komagataeibacter rhaeticus;益生菌;固定化;Bacterial cellulose;Aqueous extract of sorghum distillery residue;Komagataeibacter rhaeticus;Probiotics;Immobilization
引用: 一、 中文文獻 蕭景卿。2017。以高粱酒糟為基質生產細菌纖維素及改良式靜置培養系統之應用。國立中興大學食品暨應用生物科技學系。碩士論文。 黃子軒。2016。高粱酒糟萃取液之製備及其有機酸成分與胞外生物活性之評估。國立中興大學食品暨應用生物科技學系。碩士論文。 黃得為。2007。細菌纖維素生產培養基配方改良暨規模放大之研究。國立中興大學食品暨應用生物科技學系。碩士論文。 許銀勇。2007。不同施肥量及栽培密度對芋農藝性狀及成分之影響。國立嘉義大學農學研究所。碩士論文。 二、 英文文獻 Amine K.M., Champagne C.P., Raymond Y., St-Gelais D., Britten M., Fustier P., Salmieri S., Lacroix M. (2014) Survival of microencapsulated Bifidobacterium longum in Cheddar cheese during production and storage. Food Control, 37, 193-199 Atalla R.H., Vanderhart D.L. (1984) Native cellulose: a composite of two distinct crystalline forms. Science, 233(4633), 283-285 Aytekin A.Ö., Demirbag D.D., Bayrakdar T. (2016) The statistical optimization of bacterial cellulose production via semi-continuous operation mode. Journal of Industrial and Engineering Chemistry, 37, 243-250 Bedford C.T. (1998) Glucuronic acid conjugates. Journal of Chromatography. B: Biomedical Sciences and Applications, 717, 313-326 Bielecki S., Krystynowicz A., Turkiewicz M., Kalinowska H. (2004) Polysaccharides and polyamides in the food industry. Wiley-VCH, 1 Brandes R., Carminatti C., Mikowski A., Al-Qureshi H., Recouvreux D. (2017) A mini-review on the progress of spherical bacterial cellulose production. Journal of Nano Research, 45, 142-154 Burgain J., Gaiani C., Linder M., Scher J. (2011) Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104, 467-483. Cacicedo M.L., Castro M.C., Servetas I., Bosnea L., Boura K., Tsafrakidou P., Dima A., Terpou A., Koutinas A., Castro G.R. (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172-180   Cakar F., Katı A., Özer I., Demirbag D.D., Sahin F., Aytekin A.Ö. (2014) Newly developed medium and strategy for bacterial cellulose production. Biochemical Engineering Journal, 92, 35-40 Cardoso L.D., Pinheiro S.S., de Carvalho CWP, Queiroz VAV, de Menezes CB, Moreira AVB, de Barros FAR, Awika J.M., Martino HSD, Pinheiro-Sant'Ana H.M. (2015) Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. Journal of Cereal Science, 65, 220-226 Carreira P., Mendes J.A., Trovatti E., Serafim L.S., Freire C.S., Silvestre A.J., Neto C.P. (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology, 102, 7354-7360 Chen L., Hong F., Yang X.X., Han S.F. (2013) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresource Technology, 135, 464-468. Chen YM, Xi T, Zheng Y, Guo T, Hou J, Wan Y, Chuan Gao (2009) In vitro cytotoxicity of bacterial cellulose scaffold for tissue engineered bone. Journal of Bioactive and Compatible Polymers, 24, 137-145 Cheng K.C., Jeffrey M. Catchmark, Ali Demirci (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 12, 730-736 CzajaW., Romanovicz D., R. Malcolm Brown (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11, 403-411 dos Santos RAC, Berretta AA, Barud HDS, Ribeiro SJL, González-García LN, Zucchi TD, Goldman GH, Riaño-Pachón DM. (2014) Draft genome sequence of Komagataeibacter rhaeticus strain AF1, a high producer of cellulose, isolated from Kombucha tea. Genome Announcements 2(4), 731-732 Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. (1956) Colorimetric method for determination of sugars and related substances. Division of biochemistry, University of Minnesota, St. Paul, Minn. Embuscado M., Marks J., Miller J. (1994) Optimization of cellulose production by Acetobacter xylinum thru response surface methodology. Food Hydrocolloids, 8(5), 419-430   Fijałkowski K., Peitler D., Rakoczy R., Zywicka A. (2016) Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. Food Science and Technology, 68, 322-328 Gromet Z., Schramm M., Hestrin S. (1957) Role of hexose phosphate in synthesis of cellulose by Acetobacter xylinum. Nature, 179, 28-29 Ha J.H., Shah N., Ul-Islam M., Khan T., Park J.K. (2011) Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochemistry, 46, 1717-1723 Hu C., Kitts D. D. (2005) Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine, 12, 588-597 Huang Y., Zhu C., Yang J., Nie Y., Chen C., Sun D. (2014) Recent advances in bacterial cellulose. Cellulose, 21, 1-30 Indira, D., Jijnasa, B., Arati, N., Moumita, S., Ajay, D., Eldin, J., et al. (2015) Comparative studies of ethanol production and cell viability: free cells versus immobilized cells. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(2), 1708 Jeong SI, Lee SE, Yang H, Jin YH, Park CS, Park. (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Molecular & Cellular Toxicology, 6, 373-380 Jung H.I., Jeong J.H., Lee O.M., Park G.T., Kim K.K., Park H.C., Lee S.M., Kim Y.G., Son H.J. (2010) Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresource Technology, 101, 3602-3608 Kim G.D., Yang H., , Park H.R., Park C.S., Park Y.S., Lee S.E. (2013) Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip Journal, 7(3), 201-209 Klemm D., Heublein B., Fink H.P., Bohn A. (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358-3393 Kourkoutas Y., Xolias V., Kallis M., Bezirtzoglou E., Kanellaki M. (2005) Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Process Biochemistry, 40(1), 411-416   Kuo C.H., Chen J.H., Liou B.K., Lee C.K. (2016) Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids, 53, 98-103 Langlois V., Parisota J., Bonnet V., Rabiller C. (2002) Transfer activity of bovine liver β-glucuronidase: synthesis of disaccharides containing a β-d-glucopyranuronate unit. Tetrahedron: Asymmetry, 13(21), 2369-2373 Lazarini S.C., de Aquino R., Amaral A., Fabiana C. A. Corbi . Pedro P. Corbi . Hernane S. Barud .Wilton R. Lustri (2016) Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose, 23, 737-748 Li Y., Tian C., Tian H., Zhang J., He X., Ping W., Lei H. (2012) Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Applied Microbiology and Biotechnology, 96, 1479-1487 Lin N., Dufresne A. (2014) Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325 Lin S.P., Iris Loira Calvar, Jeffrey M. Catchmark, Liu J.R., Demirci A., Cheng K.C. (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20, 2191-2219 Lin T.Y., Hassid W.Z. (1966) Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri silva. The Journal of Biological Chemistry, 241, 5284-5297 Lu Z., Zhang Y., Chi Y., Xu N., Yao W., Sun B. (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World Journal of Microbiology and Biotechnology, 27, 2281-2285 Lustri, W. R., Gomes de Oliveira Barud, H., Barud, H. S., Peres, M. F. S., Gutierrez, J., Tercjak, A., et al. (2015) Microbial cellulose - biosynthesis mechanisms and medical applications. Cellulose - fundamental aspects and current trends, 132-157 Machadoa R.T.A., Gutierrezb J., Tercjakb A., Trovattia E., Fernanda G.M. Uahibc, de Padua Morenoc G., Andresa P. Nascimentoc,Andresa A. Berretac, Sidney J.L. Ribeirod, Hernane S. Baruda (2016) Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydrate Polymers 152, 841-849   Mikkelsen, D., Flanagan, B. M., Dykes, G. A., & Gidley, M. J. (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107(2), 576-583 Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428. Mitropoulou G., Nedovic V., Goyal A., Kourkoutas Y. (2013) Immobilization technologies in probiotic food production. Journal of Nutrition and Metabolism Article ID 716861, 15 pages Mohamed F. (2010) Synthesis of bacterial cellulose by Acetobacter xylinum sp. using watermelon rind waste for biocomposite application (Master thesis). University of Malaysia Pahang, Gamnang, Malaysia Naritomi T., Kouda T., Yano H., Yoshinaga F. (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. Journal of Fermentation and Bioengineering, 85(6), 598-603 Nedovi´c V. A., Obradovi´c B., Leskosek- Cukalovi´c I., Vunjak-Novakovi´c G. (2001) Immobilized yeast bioreactor systems for brewing-recent achievements. Engineering and Manufacturing for Biotechnology, 4, 277-292 Nishiyama Y., Langan P., Chanzy H. (2002) Crystal structure and hydrogen-bonding system in celluloce Iβ form synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 124 (31), 9074-9082 Ozyurt V.H., Ötles S. (2014) Properties of probiotics and encapsulated probiotics in food. Acta Scientiarum Polonorum Technologia Alimentaria, 13(4), 413-424 Padrao J., Gonçalves S., Silva J.P., Sencadas V., Lanceros-Mendez S., Pinheiro A.C., Vicente A.A., Rodrigues L.R., Dourado F. (2016) Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids, 58, 126-140 Parisot J., Ghochikyan A., Langlois V., Sakanyan V., Rabiller C. (2002) Exopolygalacturonate lyase from Thermotoga maritima: cloning, characterization and organic synthesis application. Carbohydrate Research, 337(16), 1427-1433 Parvez S., Malik K.A., Kang S.A., Kim H.-Y. (2006) Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100, 1171-1185 Ranadheera R.D.C.S., Baines S.K., Adams M.C. (2010) Importance of food in probiotic efficacy. Food Research International, 43, 1-7 Rani M.U., Appaiah A. (2011) Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Annals of Microbiology, 61, 781-787 Rozenberga L., Skute M., Belkova L., Sable I., Vikele L., Semjonovs P., Saka M., Ruklisha M., Paegle L. (2016) Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria. Carbohydrate Polymers, 144, 33-40 Saucier L., Champagne C. (2005) Immobilised-cell technology and meat processing, Applications of Cell Immobilisation Biotechnology, 337-353 Semjonovs P., Ruklisha M., Paegle L., Saka M.,Treimane R., Skute M., Rozenberga L., Vikele L., Sabovics M., Cleenwerck I. (2017) Cellulose synthesis by Komagataeibacter rhaeticus strain p 1463 isolated from Kombucha. Applied Microbiology and Biotechnology, 101, 1003-1012 Shi Z., Zhang Y., Glyn O. Phillips, Yang G. (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids 35, 539-545 Shindo S., Kamimura, M. (1990) Immobilisation of yeast with hollow PVA gel beads, Journal of Fermentation and Bioengineering, 70, 232-234 Sugiyama J., Harada H., Fujiyoshi Y., Uyeda N. (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta, 166(2), 161-168 Sun D., Zhou L., Wu Q., Yang S. (2007) Preliminary research on structure and properties of nano-cellulose. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(4), 677-680 Sutherland I.W. (2001) Microbial polysaccharides form Gram-negative bacteria. International Dairy Journal, 11, 663-674 Tomé L. C., Brandão, L., Mendes, A. M., Silvestre, A. J., Neto, C. P., Gandini, A., et al. (2010). Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose, 17(6), 1203-1211 Ton N. M. N., Nguyen M. D., Pham T. T. H., & Le V. V. M. (2010) Influence of initial pH and sulfur dioxide content in must on wine fermentation by immobilized yeast in bacterial cellulose. International Food Research Journal, 17(3), 743-749   Toyosaki H., Naritomi T., Seto A., Matsuoka M., Tsuchida T., Yoshinaga F. (1995) Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Bioscience, Biotechnology, and Biochemistry, 59, 1498-1502 Wan Z., Wang L., Yang X., Guo J., Yin S. (2016) Enhanced water resistance properties of bacterial cellulose multilayer films by incorporating interlayers of electrospun zein fibers. Food Hydrocolloids, 61, 269-276 White G.A., Wang C.H. (1964) The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate. Biochemical Journal, 90(2), 408-423 White G.A., Wang C.H. (1964) The dissimilation of glucose and gluconate by Acetobacter xylinum. 2. Pathway evaluation. Biochemical Journal, 90(2), 424-433 Wu J.M., Liu R.H. (2013) Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. Journal of Bioscience and Bioengineering, 115, 284-290 Yamada Y., Yukphan P., Huong Thi Lan Vu, Muramatsu Y., Ochaikul D., Tanasupawat S., Nakagawa Y. (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58, 397-404 Zeng X., Darcy P. Small, Wan W. (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85, 506-513
摘要: 
細菌纖維素(bacterial cellulose)為由細菌所生產之纖維素,其結構與植物來源之纖維素相似,且有許多良好之特性,如高的純度、保水力、多孔性、及生物相容性等,故作為生物材料可廣泛應用於各種產業,如食品業、生醫業、化妝品業等;然而細菌纖維素之生產成本高且產率低,在應用上有所侷限。本研究以農產加工副產物(高粱酒糟)之萃取液作為基本培養基質,並適量補充營養源(碳源、氮源等),試著找出最適生產細菌纖維素之培養基組成並達到農產加工副產物再利用之目的,以降低細菌纖維素之生產成本;並探討靜置發酵系統之表面積及總體積(深度)對細菌纖維素產量及產率之影響,以確立靜置發酵系統之操作條件,預計將能提升細菌纖維素之產率;最後以細菌纖維素為載體進行益生菌之固定化,以擴展細菌纖維素之應用性。

  結果顯示,以本研究室篩選出之醋酸菌Komagataeibacter rhaeticus NCHU R-1於二次蒸餾後高粱酒糟之萃取液 (額外添加5%葡萄糖、0.5%醋酸及0.5%酒精) 中以10% (v/v) 之接種量進行細菌纖維素之生產有較佳之濕重及乾重產量(38.64±0.25 g/100 mL、2.65±0.13 g/100 mL)。且以靜置發酵系統中之LF-02長方形發酵容器(頂部表面積約為810 cm2)添加1 L之培養基質於30℃培養八天可得最佳之細菌纖維素產量(濕重690.23±66.28 g/L、乾重43.67±1.77 g/L),且於培養第六天可得最佳細菌纖維素之濕重、乾重產率(79.51±5.92 g/L day、4.59±0.86 g/L day)。益生菌固定化之結果顯示,以接種醋酸菌與0.5% (v/v)之Lactobacillus acidophilus及 0.1% (v/v)之L. brevis有最佳之共培養效果,分別可達1.85×106 CFU/g及6.02×106 CFU/g,並能保有與原先相似之細菌纖維素產量。此外,透過細菌纖維素膜內生菌數及利用掃描式電子顯微鏡(SEM)觀察到細菌纖維素之結構,證實細菌纖維素透過由上往下推擠之方式生長,而非依瓶身橫向擴展(呈圓柱狀)。
URI: http://hdl.handle.net/11455/95999
Rights: 同意授權瀏覽/列印電子全文服務,2020-07-04起公開。
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105043408-1.pdf4.09 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.