Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96026
DC FieldValueLanguage
dc.contributor葉娟美zh_TW
dc.contributor.authorYi-Ying Tsaien_US
dc.contributor.author蔡一瑩zh_TW
dc.contributor.other食品暨應用生物科技學系所zh_TW
dc.date2017zh_TW
dc.date.accessioned2018-12-17T03:20:51Z-
dc.identifier.citation顏銘漢、林可寰、薛文傑:容易忽略的併發症--酒精戒斷症候群,台灣醫界 2011;54:578-584。 葉娟美、廖祐毅,民105,Lactobacillus brevis YW108生化特性分析技術報告 蘇志強,盧勇誌,侯釋淵,林銘燈,民98,建立呼氣酒精測試器管理機制之研究 Almeida, C.M., Gomes, D., Faro, C., and Simoes, I. (2015). Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture. Appl. Microbiol. Biotechnol. 99, 269–281. Amore, A., Amoresano, A., Birolo, L., Henrissat, B., Leo, G., Palmese, A., and Faraco, V. (2012). A family GH51 alpha-l-arabinofuranosidase from Pleurotus ostreatus: identification, recombinant expression and characterization. Appl. Microbiol. Biotechnol. 94, 995–1006. Anders, A., Lilie, H., Franke, K., Kapp, L., Stelling, J., Gilles, E.D., and Breunig, K.D. (2006). The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding. J. Biol. Chem. 281, 29337–29348. Barreiro, L.B., Laval, G., Quach, H., Patin, E., and Quintana-Murci, L. (2008). Natural selection has driven population differentiation in modern humans. Nat. Genet. 40, 340–345. Bayard, M., McIntyre, J., Hill, K.R., and Woodside, J. (2004). Alcohol withdrawal syndrome. Am. Fam. Physician 69, 1443–1450. Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S.D., Kulakauskas, S., Lapidus, A., Goltsman, E., Mazur, M., Pusch, G.D., et al. (2004). Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22, 1554–1558. Brooks, P.J., Enoch, M.A., Goldman, D., Li, T.K., and Yokoyama, A. (2009a). The Alcohol Flushing Response: An Unrecognized Risk Factor for Esophageal Cancer from Alcohol Consumption. Plos Med. 6. Brooks, P.J., Enoch, M.A., Goldman, D., Li, T.K., and Yokoyama, A. (2009b). The Alcohol Flushing Response: An Unrecognized Risk Factor for Esophageal Cancer from Alcohol Consumption. Plos Med. 6. Carr, F.J., Chill, D., and Maida, N. (2002). The lactic acid bacteria: a literature survey. Crit. Rev. Microbiol. 28, 281–370. Cederbaum, A.I. (2012). ALCOHOL METABOLISM. Clin. Liver Dis. 16, 667–685. Chen, C.H., Ferreira, J.C.B., Gross, E.R., and Mochly-Rosen, D. (2014). Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities. Physiol. Rev. 94, 1–34. Cregg, J.M., Cereghino, J.L., Shi, J.Y., and Higgins, D.R. (2000). Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52. Curtis, B.J., Zahs, A., and Kovacs, E.J. (2013). Epigenetic targets for reversing immune defects caused by alcohol exposure. Alcohol Res 35, 97–113. De Pourcq, K., De Schutter, K., and Callewaert, N. (2010). Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl. Microbiol. Biotechnol. 87, 1617–1631. De Vuyst, L., and Leroy, F. (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13, 194–199. Deng, X., and Deitrich, R.A. (2008). Putative role of brain acetaldehyde in ethanol addiction. Curr. Drug Abuse Rev. 1, 3–8. Edenberg, H.J. (2007). The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30, 5–13. Endo, A., Tanaka, N., Oikawa, Y., Okada, S., and Dicks, L. (2014). Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr. Microbiol. 68, 531–535. Eng, M.Y., Luczak, S.E., and Wall, T.L. (2007). ALDH2, ADH1B, and ADH1C genotypes in Asians: a literature review. Alcohol Res. Health J. Natl. Inst. Alcohol Abuse Alcohol. 30, 22–27. Eriksson, C.J.P. (2001). The role of acetaldehyde in the actions of alcohol (Update 2000). Alcohol.-Clin. Exp. Res. 25, 15s–32s. Feng, Y.M., Zhang, B.Y., Zhang, Y.S., and Fukuhara, H. (1997). Secretory expression of porcine insulin precursor in Kluyveromyces lactis and its conversion into human insulin. Acta Biochim. Biophys. Sin. 29, 129–134. Fleer, R., Xin, J.C., Amellal, N., Yeh, P., Fournier, A., Guinet, F., Gault, N., Faucher, D., Folliard, F., Fukuhara, H., et al. (1991). High-Level Secretion of Correctly Processed Recombinant Human Interleukin-1-Beta in Kluyveromyces-Lactis. Gene 107, 285–295. Flores, C.L., Rodriguez, C., Petit, T., and Gancedo, C. (2000). Carbohydrate and energy-yielding metabolism in non-conventional yeasts. Fems Microbiol. Rev. 24, 507–529. Gemma, S., Vichi, S., and Testai, E. (2006). Individual susceptibility and alcohol effects:biochemical and genetic aspects. Ann Ist Super Sanita 42, 8–16. Gibson, G.R., and Roberfroid, M.B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412. Gilliland, S.E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7, 175–188. Goedde, H.W., Agarwal, D.P., Fritze, G., Meier-Tackmann, D., Singh, S., Beckmann, G., Bhatia, K., Chen, L.Z., Fang, B., and Lisker, R. (1992). Distribution of ADH2 and ALDH2 genotypes in different populations. Hum. Genet. 88, 344–346. Gross, E.R., Zambelli, V.O., Small, B.A., Ferreira, J.C.B., Chen, C.-H., and Mochly-Rosen, D. (2015). A personalized medicine approach for Asian Americans with the aldehyde dehydrogenase 2*2 variant. Annu. Rev. Pharmacol. Toxicol. 55, 107–127. Hodgson, J. (1993). Expression systems: a user's guide. Emphasis has shifted from the vector construct to the host organism. Biotechnol. N 11, 887–893. Hollenberg, C.P., and Gellissen, G. (1997). Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8, 554–560. Hugenholtz, J., Sybesma, W., Groot, M.N., Wisselink, W., Ladero, V., Burgess, K., van Sinderen, D., Piard, J.-C., Eggink, G., Smid, E.J., et al. (2002). Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82, 217–235. Hurley, T.D., Edenberg, H.J., and Li, T.-K. (2002). Pharmacogenomics of Alcoholism. In Pharmacogenomics, J. Licinio, and -Li Wong, eds. (Wiley-VCH Verlag GmbH & Co. KGaA), pp. 417–441. Husemoen, L.L.N., Fenger, M., Friedrich, N., Tolstrup, J.S., Fredriksen, S.B., and Linneberg, A. (2008). The Association of ADH and ALDH Gene Variants With Alcohol Drinking Habits and Cardiovascular Disease Risk Factors. Alcohol.-Clin. Exp. Res. 32, 1984–1991. Ishak, K.G., Zimmerman, H.J., and Ray, M.B. (1991). Alcoholic liver disease: pathologic, pathogenetic and clinical aspects. Alcohol. Clin. Exp. Res. 15, 45–66. Jo, H.J., Noh, J.S., and Kong, K.H. (2013). Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis. Protein Expr. Purif. 90, 84–89. Joenje, H. (2011). METABOLISM Alcohol, DNA and disease. Nature 475, 45–46. Koo, O.K., Jeong, D.-W., Lee, J.M., Kim, M.J., Lee, J.-H., Chang, H.C., Kim, J.H., and Lee, H.J. (2005). Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol. Lett. 27, 505–510. Kosten, T.R., and O'Connor, P.G. (2003). Management of drug and alcohol withdrawal. N. Engl. J. Med. 348, 1786–1795. Krijger, J.J., Baumann, J., Wagner, M., Schulze, K., Reinsch, C., Klose, T., Onuma, O.F., Simon, C., Behrens, S.E., and Breunig, K.D. (2012). A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microb. Cell Factories 11. Kunji, E.R.S., Slotboom, D.-J., and Poolman, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim. Biophys. Acta 1610, 97–108. Lachance, M.A. (2007). Current status of Kluyveromyces systematics. Fems Yeast Res. 7, 642–645. Larson, H.N., Weiner, H., and Hurley, T.D. (2005). Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase 'Asian' variant. J. Biol. Chem. 280, 30550–30556. Le Loir, Y., Azevedo, V., Oliveira, S.C., Freitas, D.A., Miyoshi, A., Bermúdez-Humarán, L.G., Nouaille, S., Ribeiro, L.A., Leclercq, S., Gabriel, J.E., et al. (2005). Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microb. Cell Factories 4, 2. Lee, S.-L., Chau, G.-Y., Yao, C.-T., Wu, C.-W., and Yin, S.-J. (2006). Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: significance of first-pass metabolism. Alcohol. Clin. Exp. Res. 30, 1132–1142. Leroy, F., Degeest, B., and De, V.L. (2002). A novel area of predictive modelling: describing the functionality of beneficial microorganisms in foods. Int. J. Food Microbiol. 73, 251–259. Li, D., Zhao, H., and Gelernter, J. (2012). Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum. Genet. 131, 725–737. Li, W., Yu, S., Zhang, T., Jiang, B., Stressler, T., Fischer, L., and Mu, W. (2015). Efficient Biosynthesis of Lactosucrose from Sucrose and Lactose by the Purified Recombinant Levansucrase from Leuconostoc mesenteroides B-512 FMC. J Agric Food Chem 63, 9755–9763. Liu, B., Gong, X., Chang, S.H., Yang, Y.L., Song, M., Duan, D.M., Wang, L.N., Ma, Q.J., and Wu, J. (2009). Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J. Biotechnol. 143, 95–102. Madhavan, A., and Sukumaran, R.K. (2015). Signal peptides from filamentous fungi efficiently mediate the secretion of recombinant proteins in Kluyveromyces lactis. Biochem. Eng. J. 102, 31–37. Matsushita, S., and Higuchi, S. (2017). Use of Asian samples in genetic research of alcohol use disorders: Genetic variation of alcohol metabolizing enzymes and the effects of acetaldehyde. Am. J. Addict. Merico, A., Capitanio, D., Vigentini, I., Ranzi, B.M., and Compagno, C. (2004). How physiological and cultural conditions influence heterologous protein production in Kluyveromyces lactis. J. Biotechnol. 109, 139–146. Morozova, T.V., Goldman, D., Mackay, T.F.C., and Anholt, R.R.H. (2012). The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks. Genome Biol. 13. Mu, W., Chen, Q., Wang, X., Zhang, T., and Jiang, B. (2013). Current studies on physiological functions and biological production of lactosucrose. Appl. Microbiol. Biotechnol. 97, 7073–7080. Ohkusa, T., Ozaki, Y., Sato, C., Mikuni, K., and Ikeda, H. (1995). Long-term ingestion of lactosucrose increases Bifidobacterium sp. in human fecal flora. Digestion 56, 415–420. de Oliveira, M.R., da Silva, R.S.S.F., Buzato, J.B., and Celligoi, M.A.P.C. (2007). Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem. Eng. J. 37, 177–183. Osier, M.V., Pakstis, A.J., Soodyall, H., Comas, D., Goldman, D., Odunsi, A., Okonofua, F., Parnas, J., Schulz, L.O., Bertranpetit, J., et al. (2002). A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am. J. Hum. Genet. 71, 84–99. Paton, A. (2005). Alcohol in the body. BMJ 330, 85–87. Polimanti, R., and Gelernter, J. (2017). ADH1B: From alcoholism, natural selection, and cancer to the human phenome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. Prat, G., Adan, A., and Sanchez-Turet, M. (2009). Alcohol hangover: a critical review of explanatory factors. Hum. Psychopharmacol.-Clin. Exp. 24, 259–267. Praznik, W., Spies, T., and Hofinger, A. (1992). Fructo-oligosaccharides from the stems of Triticum aestivum. Carbohydr. Res. 235, 231–238. Raimondi, S., Uccelletti, D., Amaretti, A., Leonardi, A., Palleschi, C., and Rossi, M. (2010). Secretion of Kluyveromyces lactis Cu/Zn SOD: strategies for enhanced production. Appl. Microbiol. Biotechnol. 86, 871–878. Renault, P. (2002). Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 84, 1073–1087. Robin, S., Petrov, K., Dintinger, T., Kujumdzieva, A., Tellier, C., and Dion, M. (2003). Comparison of three microbial hosts for the expression of an active catalytic scFv. Mol. Immunol. 39, 729–738. Saliola, M., Mazzoni, C., Solimando, N., Crisa, A., Falcone, C., Jung, G., and Fleer, R. (1999). Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumin in Kluyveromyces lactis. Appl. Environ. Microbiol. 65, 53–60. Shin, M.-J., Cho, Y., and Davey Smith, G. (2017). Alcohol Consumption, Aldehyde Dehydrogenase 2 Gene Polymorphisms, and Cardiovascular Health in Korea. Yonsei Med. J. 58, 689–696. Spohner, S.C., Schaum, V., Quitmann, H., and Czermak, P. (2016). Kluyveromyces lactis: An emerging tool in biotechnology. J. Biotechnol. 222, 104–116. Steinmetz, C.G., Xie, P.G., Weiner, H., and Hurley, T.D. (1997). Structure of mitochondrial aldehyde dehydrogenase: The genetic component of ethanol aversion. Structure 5, 701–711. Sun, J., Shao, Z.Y., Zhao, H., Nair, N., Wen, F., Xu, J.H., and Zhao, H.M. (2012). Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109, 2082–2092. Swennen, D., Paul, M.F., Vernis, L., Beckerich, J.M., Fournier, A., and Gaillardin, C. (2002). Secretion of active anti-Ras single-chain Fv antibody by the yeasts Yarrowia lipolytica and Kluyveromyces lactis. Microbiol.-Sgm 148, 41–50. Tephly, T.R. (1991). The Toxicity of Methanol. Life Sci. 48, 1031–1041. Tokunaga, M., Ishibashi, M., Tatsuda, D., and Tokunaga, H. (1997). Secretion of mouse alpha-amylase from Kluyveromyces lactis. Yeast 13, 699–706. Vacca, V.M., and Correllus, D.F. (2013). Alcohol poisoning. Nursing (Lond.) 43, 14–16. Van Loo, J., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., Kok, N., Macfarlane, G., Newton, D., Quigley, M., et al. (1999). Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br. J. Nutr. 81, 121–132. Welman, A.D., and Maddox, I.S. (2003). Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21, 269–274. Wiel, A. van de, Moolenaar, D., and Wielders, J. (2012). The Bac(chus) experiment: blood alcohol concentrations after wine tasting. Wine Stud. 2, 1. Wiese, J.G., Shlipak, M.G., and Browner, W.S. (2000). The alcohol hangover. Ann. Intern. Med. 132, 897–902. YOKOI, A., MARUYAMA, T., YAMANAKA, R., EKUNI, D., TOMOFUJI, T., KASHIWAZAKI, H., YAMAZAKI, Y., and MORITA, M. (2015). Relationship between acetaldehyde concentration in mouth air and tongue coating volume. J. Appl. Oral Sci. 23, 64–70. Zakhari, S. (2006). Overview: how is alcohol metabolized by the body? Alcohol Res. Health J. Natl. Inst. Alcohol Abuse Alcohol. 29, 245–254. Zakhari, S. (2013). Alcohol metabolism and epigenetics changes. Alcohol Res 35, 6–16. Zhao, Y., and Wang, C. (2015). Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases. BioMed Res. Int. 2015. Zhu, Y., Zhang, Y., and Li, Y. (2009). Understanding the industrial application potential of lactic acid bacteria through genomics. Appl. Microbiol. Biotechnol. 83, 597–610.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/96026-
dc.description.abstract現代人因為職場文化與飲食改變影響,工作忙碌經常外食,或為了工作而時常喝酒應酬,長久下來,因過度飲酒,容易導致隔天宿醉,沒有精神上班、工作效率差,又基因缺陷問題,部分東方人對於代謝乙醛(酒精代謝之中間物)的效率較差,主因為代謝乙醛的乙醛脫氫酶(Aldehyde dehydrogenase, ALDH)突變,導致代謝活性大幅降低。 實驗室先前研究由自然醱酵酸白菜醱酵汁,篩選出能較耐受酒精之菌株,再進一步以高效能液相層析儀分析,觀察其代謝酒精情況,最後以YW108代謝酒精效果最好。因此,第一部分針對YW108進行益生質和市售酒分析,實驗室生產之果寡糖有助於YW108生長;另一方面對不同濃度市售酒之耐受性進行分析,發現以梅酒和小麥製的威士忌有促進YW108生長的趨勢,以此篩選出之市售酒進行接下來的人體試驗。 在人體實驗方面,先給予受試者足量的乳酸菌YW108,再讓受試者飲用酒品,並進行酒測及SGC分析,分析人體內乙醇和乙醛量的變化。本研究進行人體試驗證明實驗室篩選之乳酸菌YW108經誘導後,能降低基因型為ADH*2/*2和ALDH*1/*1受測者的酒測值;而基因型較差者,由於飲酒搭配口服YW108無法舒緩飲酒後不適症狀,反而是一種負擔。 最後,在重組人類乙醛脫氫酶於安全/食品級菌株之表現方面,實驗室先前研究,來自人類之乙醛脫氫酶,在原核微生物中雖可表現,但蛋白質摺疊可能與真核有差異,而未測得乙醛脫氫酶活性。因此,此部分將探討改選用酵母菌kluyveromyces lactis GG799這株真核表現系統,來進行乙醛脫氫酶的生產,但由於酵母菌訊息胜肽未被切除,使得蛋白無法分泌到胞外,而目前所表現的ALDH位在胞內不可溶的部位,未來將進一步純化分析。zh_TW
dc.description.abstractThe high fat and high alcohol diet culture of Asia people effects the public health in recent decade such as terrible hangover. Moreover, about a part of Asia people suffer from metabolizing acetaldehyde ( intermediate of alcohol metabolism ) due to the gene mutation. The main reason is the mutation of aldehyde dehydrogenase ( ALDH ) leading to dramatically drop of enzyme activity. Previously, our lab screened a probiotic strain from fermented sour cabbage liquid and then analyzed the alcohol metabolism ability of screened strains, among all, Lactobacillus Brevis YW108 exhibited the best ability on alcohol metabolism. In the first part of this study, we examined the Lab produced levan and fructooligosaccharides as prebiotic to YW108 to choose a proper commercial wine for human trial. On the other hand, the tolerance of various commercially available wine with various alcohol concentration were analyzed. The pulm wine and whisky promoted the growth of YW108 and were choosen for human trials. For human trial, the subjects were given a sufficient amount of YW108 and various wine to drink. Lion alcolmeter 400 and SGC analysis was performed to analyze the changes of ethanol and acetaldehyde in vivo. In another part of this study, the expression of human recombinant acetaldehyde dehydrogenase was proceded by using yeast kluyveromyces lactis GG799 eukaryotic expression system. As the yeast signal peptide was not removed, the rALDH located in the intracellular insoluble fraction and need further investigation will be further purification analysis.en_US
dc.description.tableofcontents壹、 前言 1 一、 飲酒與健康 1 (一) 宿醉症狀與成因 1 (二) 乙醇對人體健康的影響 2 (三) 乙醛對人體健康的影響 3 (四) 飲酒過量與疾病 4 二、 人體的酒精代謝與吸收 5 (一) 人體之酒精吸收 5 (二) 影響人體酒精吸收速率及酒精滯留體內時間的因素 5 (三) 人體之酒精代謝 7 三、 酒精代謝相關基因 8 (一) 人類之酒精脫氫酶基因 8 (二) 人類之醛類脫氫酶基因 9 四、 酒精代謝相關基因之單一核苷酸多型性 11 (一) ADH1B基因的單一核苷酸多型性 11 (二) ADH1C基因的單一核苷酸多型性 12 (三) ALDH2基因的單一核苷酸多型性 12 五、 具酒精代謝能力之菌株 13 (一) Saccharomyces cerevisiae 13 (二) Streptococcus 14 (三) Lactic acid bacteria 14 六、 乳酸菌(lactic acid bacteria, LAB)介紹 14 (一) 乳酸菌於工業上的應用 15 (二) 乳酸菌於醫療保健上之用途 16 (三) 基因工程改造乳酸菌之應用 16 七、 短乳酸菌(Lactobacillus brevis)介紹 17 (一) Lactobacillus brevis YW108 18 (二) 本實驗室生產功能性寡糖作為Lactobacillus brevis YW108之益生質 18 八、 酵母菌 21 (一) 歷史 21 (二) 細胞結構和型態 21 (三) 生長與營養 21 (四) 繁殖方式 22 (五) 酵母菌之應用 22 九、 酵母菌表現系統 23 (一) Saccharomyces cerevisiae 23 (二) Pichia pastoris 24 (三) 乳酸克魯維酵母菌Kluyveromyces lactis 24 貳、 研究源起與目的 29 參、 研究架構 31 肆、 材料與方法 32 一、 菌種與質體 32 (一) 菌種 32 (二) 質體 32 二、 實驗中使用之儀器、藥品與試劑 32 三、 YW108特性分析 32 (一) 寡糖之YW108生長試驗 32 (二) 市售酒耐受性試驗 33 四、 高效能液相層析儀分析 33 (一) HPLC分析條件 33 (二) 標準曲線製作 33 (三) 樣品之乙醇消耗量測定 34 五、 人體實驗 35 (一) 受試者篩選方法建立 35 (二) 人體血液中乙醇和乙醛濃度測定 39 (三) 乳酸菌YW108製備 40 (四) 口服乳酸菌YW108之飲酒試驗 41 六、 質體DNA之萃取 42 (一) 大腸桿菌質體之萃取 42 七、 質體構築所使用之分子生物技術 43 (一) 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 43 (二) DNA 分子電泳 44 (三) DNA 分子剪切 44 (四) DNA分子之膠體回收 44 (五) PCR 產物之回收 45 (六) DNA 分子黏合 45 (七) Colony PCR 篩選轉形株 45 (八) 重組質體的序列確認 46 八、 勝任細胞之製備與電轉形條件 46 (一) 大腸桿菌(勝任細胞之製備與電轉形條件) 46 (二) 酵母菌(轉形條件) 47 九、 重組人類乙醛脫氫酶(ALDH2*1)基因設計及合成 47 十、 重組人類乙醛脫氫酶(ALDH2*1)表現載體構築 49 (一) pKLAC2-ALDH:10.6 kb,Apr 49 十一、 重組人類乙醛脫氫酶之表現 49 (一) 誘導型:酵母菌系統 49 (二) 酵母菌之破菌法 49 十二、 蛋白質之濃度測定 50 十三、 蛋白質偵測 50 (一) Glycine SDS PAGE蛋白質電泳 50 (二) 西方墨點法 (Western blot) 50 伍、 結果與討論 52 一、 具代謝酒精能力之乳酸菌株YW108特性分析 52 (一) 寡糖作為YW108的prebiotic之生長測試 52 (二) 市售酒耐受性試驗 52 二、 利用高效能液相層析儀分析乙醇消耗量 53 (一) YW108對市售酒之酒精消耗 53 (二) 最適誘導條件測試 54 三、 受試者篩選方法建立 55 (一) 簡易酒精貼片檢測 55 (二) 酒精代謝相關酵素之基因檢測 55 四、 人體試驗- YW108之飲酒試驗 56 五、 人類乙醛脫氫酶於酵母菌系統表現 58 (一) 質體構築 58 (二) 蛋白質於胞內/胞外之表現 59 陸、 結論 61 柒、 附錄一:表格 62 捌、 附錄二:圖片 92 玖、 附錄三:藥品與儀器 158 壹拾、 參考文獻 168zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subject酒精zh_TW
dc.subject乙醛脫氫酶zh_TW
dc.subject酒精脫氫酶zh_TW
dc.subject酵母菌zh_TW
dc.subjectkluyveromyces lactis GG799zh_TW
dc.subjectLactobacillus Brevis YW108zh_TW
dc.subjectalcoholen_US
dc.subjectaldehyde dehydrogenaseen_US
dc.subjectalcohol dehydrogenaseen_US
dc.subjectyeasten_US
dc.subjectkluyveromyces lactis GG799en_US
dc.subjectLactobacillus Brevis YW108en_US
dc.titleStudy on the characterization and oral effect on alcohol metabolism by probiotic Lactobacillus brevis YW108 and the recombinant expression of human acetaldehyde dehydrogenase in Kluyveromyces lactisen_US
dc.title植生型乳酸菌株Lactobacillus brevis YW108代謝酒精之特性,對口服酒精代謝之影響以及重組人類乙醛脫氫酶於酵母菌株Kluyveromyces lactis表現之研究zh_TW
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2020-08-14zh_TW
dc.date.openaccess10000-01-01-
item.openairetypethesis and dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
item.fulltextwith fulltext-
item.cerifentitytypePublications-
Appears in Collections:食品暨應用生物科技學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7104043210-1.pdf12.76 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.