Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYen-Hsun Luen_US
dc.identifier.citation方柏翔. (2015). 不同界面活性劑對糖質克弗爾多醣/小麥澱粉可食膜物理性質的影響. 碩士, 國立中興大學,食品暨應用生物科技學系所 台中市(2015) 王淯湞. (2015). 糖液克弗爾粒水萃多醣之理化特性. 碩士, 國立中興大學,食品暨應用生物科技學系所 台中市(2015) 吳宛諭. (2010). 不同界面活性劑對樹薯澱粉/脫色仙草葉膠可食性薄膜的物性影響. 碩士, 國立中興大學,食品暨應用生物科技學系所 台中市(2010) 黃義承. (2012). 黑糖液克弗爾顆粒的增量與利用其分離菌株PU01生產多醣. 碩士, 靜宜大學,食品營養學系 台中市(2012) 林詩涵. (2014). 以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性. 碩士, 國立中興大學,食品暨應用生物科技學系所 台中市(2014) Aguirre, A., Borneo, R., & León, A. E. (2013). Properties of triticale protein films and their relation to plasticizing–antiplasticizing effects of glycerol and sorbitol. Industrial Crops and Products, 50, 297-303. Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food and Bioproducts Processing, 80(2), 118-128. Alcantara, C., Rumsey, T., & Krochta, J. (1998). Drying rate effect on the properties of whey protein films. Journal of Food Process Engineering, 21(5), 387-405. Alves, J. S., dos Reis, K. C., Menezes, E. G., Pereira, F. V., & Pereira, J. (2015). Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydrate Polymers, 115, 215-222. Andreuccetti, C., Carvalho, R. A., & Grosso, C. R. (2009). Effect of hydrophobic plasticizers on functional properties of gelatin-based films. Food Research International, 42(8), 1113-1121. Antoniou, J., Liu, F., Majeed, H., Qazi, H. J., & Zhong, F. (2014). Physicochemical and thermomechanical characterization of tara gum edible films: effect of polyols as plasticizers. Carbohydrate Polymers, 111, 359-365. Baldwin, E., Hagenmaier, R., & Bai, J. (2011). Introduction. In Edible Coatings and Films to Improve Food Quality, Second Edition (pp. 1-12): Taylor & Francis. Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348-356. BeMiller, J. N. (2011). Pasting, paste, and gel properties of starch–hydrocolloid combinations. Carbohydrate Polymers, 86(2), 386-423. Bensmira, M., Nsabimana, C., & Jiang, B. (2010). Effects of fermentation conditions and homogenization pressure on the rheological properties of Kefir. LWT - Food Science and Technology, 43(8), 1180-1184. Bergo, P., Carvalho, R., Sobral, P., Dos Santos, R., Da Silva, F., Prison, J., Solorza‐Feria, J., & Habitante, A. (2008). Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, 21(2), 85-89. Bersaneti, G. T., Mantovan, J., Magri, A., Mali, S., & Celligoi, M. A. (2016). Edible films based on cassava starch and fructooligosaccharides produced by Bacillus subtilis natto CCT 7712. Carbohydrate Polymers, 151, 1132-1138. Blahovec, J. (2004). Sorption isotherms in materials of biological origin mathematical and physical approach. Journal of Food Engineering, 65(4), 489-495. Bourtoom, T. (2009). <Review Article Edible protein films- properties enhancement.pdf>. International Food Research Journal, 16(11), 11-19. Byun, Y., Zhang, Y., & Geng, X. (2014). Plasticization and Polymer Morphology. 87-108. Chen, C. H., Kuo, W. S., & Lai, L. S. (2009a). Effect of surfactants on water barrier and physical properties of tapioca starch/decolorized hsian-tsao leaf gum films. Food Hydrocolloids, 23(3), 714-721. Chen, C. H., Kuo, W. S., & Lai, L. S. (2009b). Rheological and physical characterization of film-forming solutions and edible films from tapioca starch/decolorized hsian-tsao leaf gum. Food Hydrocolloids, 23(8), 2132-2140. Chen, C. H., Kuo, W. S., & Lai, L. S. (2010). Water barrier and physical properties of starch/decolorized hsian-tsao leaf gum films: Impact of surfactant lamination. Food Hydrocolloids, 24(2-3), 200-207. Chen, C. H., & Lai, L. S. (2008). Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids, 22(8), 1584-1595. Chen, Y., Liu, C., Chang, P. R., Cao, X., & Anderson, D. P. (2009c). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers, 76(4), 607-615. Chick, J., & Ustunol, Z. (1998). Mechanical and barrier properties of lactic acid and rennet precipitated casein‐based edible films. Journal of Food Science, 63(6), 1024-1027. Chiumarelli, M., & Hubinger, M. D. (2014). Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 38, 20-27. Cuq, B., Gontard, N., Aymard, C., & Guilbert, S. (1997). Relative humidity and temperature effects on mechanical and water vapor barrier properties of myofibrillar protein-based films. Polymer Gels and Networks, 5(1), 1-15. Debeaufort, F., Quezada-Gallo, J.-A., Delporte, B., & Voilley, A. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180 (2000) 2047–2055. Debeaufort, F., Quezada-Gallo, J.-A., & Voilley, A. (1998). Edible films and coatings: tomorrow's packagings: a review. Critical Reviews in Food Science, 38(4), 299-313. Denavi, G., Tapia-Blácido, D. R., Añón, M. C., Sobral, P. J. A., Mauri, A. N., & Menegalli, F. C. (2009). Effects of drying conditions on some physical properties of soy protein films. Journal of Food Engineering, 90(3), 341-349. Dick, M., Costa, T. M., Gomaa, A., Subirade, M., Rios Ade, O., & Flores, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205. Embuscado, M. E., & Huber, K. C. (2009). Edible films and coatings for food applications. Berlin,Heidelberg: Springer. Fakhouri, F. M., Costa, D., Yamashita, F., Martelli, S. M., Jesus, R. C., Alganer, K., Collares-Queiroz, F. P., & Innocentini-Mei, L. H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers, 95(2), 681-689. Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2005). Mechanical properties of tapioca-starch edible films containing sorbates. LWT - Food Science and Technology, 38(6), 631-639. Farhan, A., & Hani, N. M. (2017). Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocolloids, 64, 48-58. Fernández-Pan, I., Ziani, K., Pedroza-Islas, R., & Maté, J. I. (2010). Effect of Drying Conditions on the Mechanical and Barrier Properties of Films Based on Chitosan. Drying Technology, 28(12), 1350-1358. Fiorda, F. A., de Melo Pereira, G. V., Thomaz-Soccol, V., Rakshit, S. K., Pagnoncelli, M. G. B., de Souza Vandenberghe, L. P., & Soccol, C. R. (2017). Microbiological, biochemical, and functional aspects of sugary kefir fermentation-A review. Food Microbiology, 66, 86-95. Flores, S., Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2007). Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Research International, 40(2), 257-265. Ghasemlou, M., Khodaiyan, F., Jahanbin, K., Gharibzahedi, S. M. T., & Taheri, S. (2012). Structural investigation and response surface optimisation for improvement of kefiran production yield from a low-cost culture medium. Food Chemistry, 133(2), 383-389. Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011a). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477-483. Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011b). Rheological and structural characterisation of film-forming solutions and biodegradable edible film made from kefiran as affected by various plasticizer types. International Journal of Biological Macromolecules, 49(4), 814-821. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011c). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49(3), 378-384. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011d). Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127(4), 1496-1502. Gontard, N., Guilbert, S., & CUQ, J. L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(1), 206-211. Guzel-Seydim, Z., Kök-Taş, T., & Greene, A. K. (2010). Kefir and koumiss: Microbiology and technology. In Development and Manufacture of Yogurt and Other Functional Dairy Products (pp. 143-163): CRC Press Boca Raton, FL. Han, J. H. (2014). Edible Films and Coatings. 213-255. Haq, M. A., Hasnain, A., & Azam, M. (2014). Characterization of edible gum cordia film: Effects of plasticizers. LWT-Food Science and Technology, 55(1), 163-169. Hazaveh, P., Mohammadi Nafchi, A., & Abbaspour, H. (2015). The effects of sugars on moisture sorption isotherm and functional properties of cold water fish gelatin films. International Journal of Biological Macromolecules, 79, 370-376. Horisberger, M. (1969). Structure of the dextran of the tibi grain. Carbohydrate Research, 10(3), 379-385. Karbowiak, T., Debeaufort, F., & Voilley, A. (2007). Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocolloids, 21(5-6), 879-888. Kesenkaş, H., Gürsoy, O., & Özbaş, H. (2017). Chapter 14 - Kefir A2 - Frias, Juana. In C. Martinez-Villaluenga & E. Peñas (Eds.), Fermented Foods in Health and Disease Prevention (pp. 339-361). Boston: Academic Press. Kolybaba, M., Tabil, L., Panigrahi, S., Crerar, W., Powell, T., & Wang, B. (2006). Biodegradable polymers: past, present, and future. In ASABE/CSBE North Central Intersectional Meeting (pp. 1): American Society of Agricultural and Biological Engineers. Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50-58. Lacroix, M., & Vu, K. D. (2014). Chapter 11 - Edible Coating and Film Materials: Proteins. In Innovations in Food Packaging (Second Edition) (pp. 277-304). San Diego: Academic Press. Medina Jaramillo, C., Gutierrez, T. J., Goyanes, S., Bernal, C., & Fama, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, 151, 150-159. Micheli, L., Uccelletti, D., Palleschi, C., & Crescenzi, V. (1999). Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Applied Microbiology and Biotechnology, 53(1), 69-74. Mir, M. A., & Nath, N. (1995). Sorption isotherms of fortified mango bars. Journal of Food Engineering, 25(1), 141-150. Moreira, R., Chenlo, F., Torres, M., Silva, C., Prieto, D., Sousa, A., Hilliou, L., & Gonçalves, M. (2011). Drying kinetics of biofilms obtained from chestnut starch and carrageenan with and without glycerol. Drying Technology, 29(9), 1058-1065. Motedayen, A. A., Khodaiyan, F., & Salehi, E. A. (2013). Development and characterisation of composite films made of kefiran and starch. Food Chemistry, 136(3-4), 1231-1238. Nguyen Vu, H. P., & Lumdubwong, N. (2016). Starch behaviors and mechanical properties of starch blend films with different plasticizers. Carbohydrate Polymers, 154, 112-120. Osés, J., Fernández-Pan, I., Mendoza, M., & Maté, J. I. (2009). Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity. Food Hydrocolloids, 23(1), 125-131. Pérez-Gago, M., & Krochta, J. (2001). Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. Journal of Food Science, 66(5), 705-710. Pérez-Gago, M., & Rhim, J. (2014). Edible coating and film materials: Lipid bilayers and lipid emulsions. In Innovations in Food Packaging, 2nd edn. (pp. 325-345). London: Academic Press. Park, H. J., Byun, Y. J., Kim, Y. T., Whiteside, W. S., & Bae, H. J. (2014). Processes and Applications for Edible Coating and Film Materials from Agropolymers. In Innovations in Food Packaging: Second Edition (Vol. 19, pp. 257-275): Elsevier Ltd. Peressini, D., Bravin, B., Lapasin, R., Rizzotti, C., & Sensidoni, A. (2003). Starch–methylcellulose based edible films: rheological properties of film-forming dispersions. Journal of Food Engineering, 59(1), 25-32. Pidoux, M. (1989). The microbial flora of sugary kefir grain (the gingerbeer plant): biosynthesis of the grain fromLactobacillus hilgardii producing a polysaccharide gel. World Journal of Microbiology and Biotechnology, 5(2), 223-238. Piermaria, J., Bosch, A., Pinotti, A., Yantorno, O., Garcia, M. A., & Abraham, A. G. (2011). Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloids, 25(5), 1261-1269. Piermaria, J., Pinotti, A., Garcia, M. A., & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids, 23(3), 684-690. Pogačić, T., Šinko, S., Zamberlin, Š., & Samaržija, D. (2013). Microbiota of kefir grains. Mljekarstvo, 63(1), 3-14. Prommakool, A., Sajjaanantakul, T., Janjarasskul, T., & Krochta, J. M. (2011). Whey protein–okra polysaccharide fraction blend edible films: tensile properties, water vapor permeability and oxygen permeability. Journal of the Science of Food and Agriculture, 91(2), 362-369. Razavi, S. M. A., Mohammad Amini, A., & Zahedi, Y. (2015). Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocolloids, 43, 290-298. Rezaei, M., & Motamedzadegan, A. (2015). The Effect of Plasticizers on Mechanical Properties and Water Vapor Permeability of Gelatin-Based Edible Films Containing Clay Nanoparticles. World Journal of Nano Science and Engineering, 05(04), 178-193. Rodríguez, M., Osés, J., Ziani, K., & Maté, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846. Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 53(1), 326-336. Schneedorf, J. M. c. (2012). Kefir D'Aqua and Its Probiotic Properties. In E. C. Rigobelo (Ed.), Probiotic in Animals (pp. Ch. 03). Rijeka: InTech. Shih, F. F., Daigle, K. W., & Champagne, E. T. (2011). Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films. Food Chemistry, 127(1), 118-121. Skurtys, O., Acevedo, C., Pedreschi, F., Enronoe, J., Osorio, F., & Aguilera, J. (2014). Food hydrocolloid edible films and coatings: Nova Science Publishers, Incorporated. Sothornvit, R., & Krochta, J. M. (2005). 23 - Plasticizers in edible films and coatings A2 - Han, Jung H. In Innovations in Food Packaging (pp. 403-433). London: Academic Press. Spence, K. L., Venditti, R. A., Rojas, O. J., Pawlak, J. J., & Hubbe, M. A. (2011). Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioResources, 6(4), 4370-4388. Suppakul, P., Chalernsook, B., Ratisuthawat, B., Prapasitthi, S., & Munchukangwan, N. (2013). Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing–antiplasticizing effects. LWT - Food Science and Technology, 50(1), 290-297. Tapia-Blácido, D. R., Sobral, P. J. d. A., & Menegalli, F. C. (2013). Effect of drying conditions and plasticizer type on some physical and mechanical properties of amaranth flour films. LWT - Food Science and Technology, 50(2), 392-400. Tharanathan, R. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71-78. Waldherr, F. W., Doll, V. M., Meißner, D., & Vogel, R. F. (2010). Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiology, 27(5), 672-678. Yang, L., & Paulson, A. T. (2000). Mechanical and water vapour barrier properties of edible gellan films. Food Research International, 33(7), 563-570. Yin, S.-W., Tang, C.-H., Wen, Q.-B., & Yang, X.-Q. (2007). Properties of cast films from hemp (Cannabis sativa L.) and soy protein isolates. A comparative study. Journal of Agricultural and Food Chemistry, 55(18), 7399-7404. Zhang, P., Zhao, Y., & Shi, Q. (2016). Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydrate Polymers, 153, 345-355. Zhao, Y. (2011). Application of commercial coatings. In Edible Coatings and Films to Improve Food Quality (pp. 319-331): CRC Press. Zhong, Y., & Li, Y. (2011). Effects of surfactants on the functional and structural properties of kudzu (Pueraria lobata) starch/ascorbic acid films. Carbohydrate Polymers, 85(3), 622-628.zh_TW
dc.description.abstract由於石油資源有限且對環境負成本極高,可食膜的開發具有建設性和降低環境成本的功效。本實驗目的為探討塑化劑(山梨糖醇、木糖醇及甘油)及澱粉(馬鈴薯、樹薯及小麥)種類對糖質克弗爾多醣/澱粉可食膜的性質影響,針對可食膜表觀性質、親/疏水性以及機械性質的研究探討。 糖質克弗爾多醣/澱粉可食模的物理性質與澱粉和塑化劑種類有很高的相關性。整體而言,可食膜厚度的趨勢為,30%>15%塑化劑濃度,而小麥>馬鈴薯>樹薯澱粉。較高塑化劑濃度的樹薯澱粉可食膜有較滴的不透明度。微結構的觀察結果顯示,小麥澱粉無論在表面還是斷面都比另外兩種澱粉平滑,另外兩種澱粉在斷面有比較明顯的氣泡出現。 可食膜水分含量隨著甘油塑化劑濃度上升而上升,但山梨糖醇以及木糖醇對可食膜水分含量沒有明顯的差異。水氣透過性和水溶解度在較高的塑化劑濃度下都有比較高的趨勢。可食膜亮面幾乎都比霧面有較小的水接觸角。大部分的水接觸角因為較高的塑化劑濃度而變小,只有糖質克弗爾多醣/樹薯澱粉以甘油作塑化劑組別有相反的趨勢。糖質克弗爾多醣/澱粉可食膜各實驗組別在等溫吸濕曲線都展現典型的親水性生物聚合物特性。 機械性質試驗發現較高的塑化劑濃度會增加穿刺形變量和斷裂伸長量並同時降低抗拉伸強度,但對可食膜的抗穿刺強度卻沒有顯著性的下降,推測是因為較高塑化劑濃度時同實影響了可食膜厚度和結構。 這些結果顯示可以透過塑化劑和澱粉種類的選擇,來改變可食膜和可食塗層的多樣性,在食品包裝工業上非常具有潛力。zh_TW
dc.description.abstractDevelopment of biodegradable films has a highly practical and environmental value due to the limited resources. Therefore, the objective of this study is to investigate the properties of sugary kefir polysaccharide/starch edible films as a function of types of plasticizers (sorbitol, xylitol and glycerol) and starch (potato, tapioca and wheat). Specifically, the thickness, opacity, microstructure、hydrophobic/hydrophilic properties and mechanical properties of the films would be determined. Physical properties of sugary kefir polysaccharide/starch edible films showed strong dependency on the types of plasticizers and starch. Generally, the thickness of the films was in the order of 30%>15% plasticizer and wheat>potato>tapioca starch. Films formed with tapioca starch and more plasticizer generally showed more transparent appearance. Microscopic examination revealed that films with wheat starch was much smoother at the cross-section, in contrast to those with the other two types of starch, which showed obvious porous structure at the cross-section. Moisture content increased with increasing glycerol concentration, but had no significant effect with increasing sorbitol and xylitol concentration. Water vapor permeability and water solubility increased with increasing plasticizer concentration. Under side of edible films had smaller water contact angle than upper side of edible films. Most of sample groups had smaller water contact angle with higher concentration of plasticizer. The sorption isotherms of sugary kefir polysaccharide/starch edible with any type of plasticizer showed typical behavior of water-vapor-sensitive hydrophilic biopolymers. Mechanical test results revealed that a higher concentration of plasticizer would increase the elongation at break and puncture deformation, decrease the tensile strength, but had no significant effect on the puncture strength of the films, probably related to the thickness and structure of the films. These results implied the diverse potentials for biodegradable films and edible coating applications by adjusting the types of plasticizer and starch.en_US
dc.description.tableofcontents摘要 i Abstract iii 目錄 v 表目錄 xi 圖目錄 xiii 壹、 前言 1 貳、 文獻回顧 3 2.1.可食膜 3 2.1.1.定義與背景 3 2.1.2可食膜的材料 4 (1)碳水化合物 6 (2)蛋白質 7 (3)脂質 7 (4)塑化劑 8 2.1.3.可食膜的製備與應用 14 2.1.4.鑄膜法乾燥條件的影響 18 2.2.克弗爾(Kefir) 19 2.2.1.背景 19 2.2.2.克弗爾多醣(Kefiran) 21 2.2.3. 黑糖液克弗爾 24 2.2.4. 黑糖液克弗爾多醣與澱粉混合系統 28 2.3.等溫吸濕曲線 30 2.4.水氣透過性質 33 2.5.可食膜機械性質(Mechanical Properties) 36 參、 研究目的與實驗架構 40 3.1.研究目的 40 3.2.實驗架構流程 41 肆、 材料與方法 42 4.1.糖質克弗爾多醣(Sugary kefir grains) 42 4.1.1.糖質克弗爾粒的培養 42 4.1.2.糖質克弗爾多醣萃取 43 4.2.塑化劑 45 4.2.1.甘油(glycerol) 45 4.2.2.木糖醇(xylitol) 45 4.2.3. 山梨糖醇(sorbitol) 45 4.3.直鏈澱粉含量分析 47 4.4.可食膜溶液及製備 48 4.4.1.糖質克弗爾多醣/澱粉可食膜溶液製備 48 4.4.2.可食膜製備 49 4.5.可食膜的性質測驗 49 4.5.1.X-ray繞射圖譜 49 4.5.2.表觀 49 (1)厚度測定 49 (2)不透明度分析 50 (3)場發射掃描式電子顯微鏡 50 4.5.3.親/疏水性質 51 (1)水分含量 51 (2) 溶解度 51 (3)水接觸角 51 (4) 水氧透過性質 52 (5)等溫吸濕曲線 52 4.5.4.機械性質 56 (1)穿刺試驗 56 (2)抗張試驗 56 4.6.統計分析 57 伍、 結果與討論 58 5.1.不同塑化劑、澱粉對可食膜成形之影響 58 5.2.可食膜X-ray繞射圖譜 62 5.3.可食膜表觀性質 65 5.3.1.可食膜外觀 65 5.3.2.可食膜厚度 70 5.3.3.可食膜不透明度 73 5.3.4.可食膜微結構觀察 77 5.4.可食膜親/疏水性質 82 5.4.1.可食膜水分含量及溶解度 82 5.4.2.可食膜水接觸角 88 5.4.3.可食膜等溫吸濕曲線 96 5.4.4.可食膜水氣透過性質 101 5.5.可食膜之機械性質 105 5.5.1.穿刺試驗 105 5.5.2.拉伸試驗 109 陸、 結論 113 柒、 參考文獻 115 附錄 125 附錄圖 A、不同種類塑化劑對糖質克弗爾多醣/澱粉可食膜不透明度 *(AU˙nm)的影響 125 附錄圖 B、不同種類塑化劑對糖質克弗爾多醣/澱粉可食膜水分含量*(%)的影響 126 附錄圖 C、不同種類塑化劑對糖質克弗爾多醣/澱粉可食膜溶解度*(%)的影響 127 附錄圖 D、不同種類塑化劑對糖質克弗爾多醣/澱粉可食膜水氣通透性*(g/m•s•Pa•10-10)之影響 128 附錄圖 E、不同種類塑化劑對糖質克弗爾多醣/澱粉可食膜穿刺強度*(N)之影響 129 附錄圖 F、不同種類塑化劑對糖質克弗爾多醣/澱粉可食膜穿刺形變量*(mm)之影響 130 附錄圖 G、不同種類塑化劑對糖質克弗爾多醣/澱粉食膜抗拉伸強度*(MPa)之影響 131 附錄圖 H、不同種類塑化劑對糖質克弗爾多醣/澱粉可食膜斷裂伸長量*(%)之影響 132zh_TW
dc.subjectSugary kefir polysaccharideen_US
dc.subjectEdible filmen_US
dc.titleEffect of Types of Plasticizer and Starch on the Physical Properties of Sugary Kefir Polysaccharide/Starch Edible Filmsen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:食品暨應用生物科技學系
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-7103043041-1.pdf4.47 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.