Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96033
標題: Effect of heat-moisture treatments on the digestibility and physicochemical properties of Tainung No.57 and Tainung No.66 sweet potato starches
濕熱處理對台農57號與台農66號甘藷澱粉消化性與理化性質之影響
作者: Hsin-Yi Chi
紀欣儀
關鍵字: 甘藷澱粉;消化性;理化性質;流變性質;Sweet potato starch;digestibility;physicochemical property;rheology
引用: 王姿閔:國產甘藷之花青素組成及抗解澱粉製備之研究。碩士論文。國立臺灣大學農業化學研究所。台北市,台灣。(2010)。 行政院農業委員會甘藷館。2018。(http://kmweb.coa.gov.tw/subject/mp.asp?mp=190) 呂政義, & 張永和:食品化學:碳水化合物。p44-56。華香園出版社。台北市,台灣。(1996)。 孫永怡:不同糖/鹽溶液對紫玉甘藷澱粉理化性質之影響。碩士論文。國立中興大學食品暨應用生物科技學研究所。台中市,台灣。(2008)。 徐清銘:甘藷大翻身人人搶著要。豐年。63(15):10-15(2013)。 陳儒寬:臺灣地區台農57號及台農66號地瓜澱粉物理特性與其枝鏈澱粉結構相關性之分析。碩士論文。國立臺灣大學食品科技研究所。台北市,台灣。(2014)。 Abegunde, O. K., Mu, T.-H., Chen, J.-W., & Deng, F.-M. (2013). Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids, 33(2), 169-177. Adebowale, K., Afolabi, T., & Olu-Owolabi, B. (2005). Hydrothermal treatments of Finger millet (Eleusine coracana) starch. Food Hydrocolloids, 19(6), 974-983. Ai, Y., & Jane, J. l. (2016). Starch: Structure, Property, and Determination. In Encyclopedia of Food and Health (pp. 165-174). Oxford: Academic Press. Almdal, K., Dyre, J., Hvidt, S., & Kramer, O. (1993). Towards a phenomenological definition of the term 'gel'. Polymer Gels and Networks, 1(1), 5-17. Ambigaipalan, P., Hoover, R., Donner, E., & Liu, Q. (2014). Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chemistry, 143, 175-184. AOAC. (2000). Official methods of analysis. Washington, DC, USA: AOAC International. Barbucci, R., Rappuoli, R., Borzacchiello, A., & Ambrosio, L. (2000). Synthesis, chemical and rheological characterization of new hyaluronic acid-based hydrogels. Journal of Biomaterials Science, Polymer Edition, 11(4), 383-399. Bemiller, J. N. (1997). Starch modification: challenges and prospects. Starch‐Stärke, 49(4), 127-131. BeMiller, J. N. (2007). Starches, modified starches, and other starch products. In Carbohydrate chemistry for food scientists (pp. 173-223). Minnesota: American Association of Cereal Chemists, Inc (AACC). Casson, N. (1959). A flow equation for pigment-oil suspensions of the printing ink type. In Rheology of disperse systems (pp. 82-104). New York: Pergamon Press. Cetiner, B., Acar, O., Kahraman, K., Sanal, T., & Koksel, H. (2017). An investigation on the effect of heat-moisture treatment on baking quality of wheat by using response surface methodology. Journal of Cereal Science, 74, 103-111. Chen, X., He, X., Fu, X., & Huang, Q. (2015). In vitro digestion and physicochemical properties of wheat starch/flour modified by heat-moisture treatment. Journal of Cereal Science, 63, 109-115. Chung, H.-J., Liu, Q., & Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3), 436-447. Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate Research, 227, 103-112. Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A., & Englyst, H. N. (1996). Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition, 75(5), 733-747. Dengate, H., & Meredith, P. (1984). Variation in size distribution of starch granules from wheat grain. Journal of Cereal Science, 2(2), 83-90. Dincer, C., Karaoglan, M., Erden, F., Tetik, N., Topuz, A., & Ozdemir, F. (2011). Effects of baking and boiling on the nutritional and antioxidant properties of sweet potato [Ipomoea batatas (L.) Lam.] cultivars. Plant Foods for Human Nutrition, 66(4), 341-347. Donald, A., Waigh, T., Jenkins, P., Gidley, M., Debet, M., & Smith, A. (1997). Internal structure of starch granules revealed by scattering studies. Donovan, J., Lorenz, K., & Kulp, K. (1983). Differential Scanning Calorimetry of Heat-Moisture. Cereal Chemistry, 60(5), 381-387. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. Eerlingen, R. C., Jacobs, H., Block, K., & Delcour, J. A. (1997). Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohydrate Research, 297(4), 347-356. Englyst, H. N., Kingman, S., & Cummings, J. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, S33-50. Englyst, H. N., Wiggins, H., & Cummings, J. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst, 107(1272), 307-318. Folayan, J. A., Anawe, P., Abioye, P. O., & Elehinafe, F. B. (2017). Selecting the Most Appropriate Model for Rheological Characterization of Synthetic Based Drilling Mud. International Journal of Applied Engineering Research, 12(18), 7614-7649. Fuentes-Zaragoza, E., Riquelme-Navarrete, M., Sánchez-Zapata, E., & Pérez-Álvarez, J. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43(4), 931-942. Galliard, T., & Bowler, P. (1987). Starch: properties and potential. In T. Galliard, Starch properties and potential (pp. 55-78). New York: John Wiley & Sons Incorporated. Gerard, C., Colonna, P., Buleon, A., & Planchot, V. (2001). Amylolysis of maize mutant starches. Journal of the Science of Food and Agriculture, 81(13), 1281-1287. Goldstein, I. J., Hollerman, C. E., & Merrick, J. M. (1965). Protein-carbohydrate interaction I. The interaction of polysaccharides with concanavalin A. Biochimica et Biophysica Acta (BBA) - General Subjects, 97(1), 68-76. Gudmundsson, M., & Eliasson, A.-C. (1990). Retrogradation of amylopectin and the effects of amylose and added surfactants/emulsifiers. Carbohydrate Polymers, 13(3), 295-315. Gunaratne, A., & Hoover, R. (2002). Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers, 49(4), 425-437. Harold Wu, H.-C., & Sarko, A. (1978). The double-helical molecular structure of crystalline A-amylose. Carbohydrate Research, 61(1), 27-40. Hizukuri, S. (1957). X-Ray Diffractometric Studies on Starches. II. Structure of' C'-Type Crystal-lite. Nougeikagakugakkaishi, 31(7), 525-527. Hizukuri, S. (1961). X-Ray Diffractometric Studies on Starches Part VI. Agricultural and Biological Chemistry, 25(1), 45-49. Hizukuri, S. (1969). The effect of environment temperature of plants on the physicochemical properties of their starches. Journal of the Technological Society of Starch, 17(1), 73-88. Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydrate Research, 147, 342-347. Hizukuri, S. (1996). Starch: analytical aspects. In FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER- (pp. 347-430). Hizukuri, S., Kaneko, T., & Takeda, Y. (1983). Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochimica et Biophysica Acta (BBA)-General Subjects, 760(1), 188-191. Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45(3), 253-267. Hoover, R. (2010). The Impact of Heat-Moisture Treatment on Molecular Structures and Properties of Starches Isolated from Different Botanical Sources. Critical Reviews in Food Science and Nutrition, 50(9), 835-847. Hoover, R., & Manuel, H. (1996a). The Effect of Heat–Moisture Treatment on the Structure and Physicochemical Properties of Normal Maize, Waxy Maize, Dull Waxy Maize and Amylomaize V Starches. Journal of Cereal Science, 23(2), 153-162. Hoover, R., & Manuel, H. (1996b). Effect of heat—moisture treatment on the structure and physicochemical properties of legume starches. Food Research International, 29(8), 731-750. Hoover, R., & Vasanthan, T. (1994a). Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydrate Research, 252, 33-53. Hoover, R., & Vasanthan, T. (1994b). The flow properties of native, heat‐moisture treated, and annealed starches from wheat, oat, potato and lentil. Journal of Food Biochemistry, 18(2), 67-82. Hormdok, R., & Noomhorm, A. (2007). Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT-Food Science and Technology, 40(10), 1723-1731. Huang, T.-T., Zhou, D.-N., Jin, Z.-Y., Xu, X.-M., & Chen, H.-Q. (2015). Effect of debranching and heat-moisture treatments on structural characteristics and digestibility of sweet potato starch. Food Chemistry, 187, 218-224. Huang, T.-T., Zhou, D.-N., Jin, Z.-Y., Xu, X.-M., & Chen, H.-Q. (2016). Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 54, Part A, 202-210. Hung, P. V., Vien, N. L., & Lan Phi, N. T. (2016). Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chemistry, 191, 67-73. Imberty, A., Buléon, A., Tran, V., & Péerez, S. (1991). Recent advances in knowledge of starch structure. Starch‐Stärke, 43(10), 375-384. Imberty, A., Chanzy, H., Pérez, S., Bulèon, A., & Tran, V. (1988a). The double-helical nature of the crystalline part of A-starch. Journal of Molecular Biology, 201(2), 365-378. Imberty, A., Chanzy, H., Perez, S., Buleon, A., & Tran, V. (1987). New three-dimensional structure for A-type starch. Macromolecules, 20(10), 2634-2636. Imberty, A., & Perez, S. (1988b). A revisit to the three‐dimensional structure of B‐type starch. Biopolymers, 27(8), 1205-1221. Ishida, H., Suzuno, H., Sugiyama, N., Innami, S., Tadokoro, T., & Maekawa, A. (2000). Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chemistry, 68(3), 359-367. Jacobs, H., & Delcour, J. A. (1998). Hydrothermal modifications of granular starch, with retention of the granular structure: A review. Journal of Agricultural and Food Chemistry, 46(8), 2895-2905. Jane, J.-l. (2006). Current understanding on starch granule structures. Journal of Applied Glycoscience, 53(3), 205-213. Jane, J.-l., Ao, Z., Duvick, S. A., Wiklund, M., Yoo, S.-H., Wong, K.-S., & Gardner, C. (2003). Structures of amylopectin and starch granules: How are they synthesized? Journal of Applied Glycoscience, 50(2), 167-172. Jane, J.-l., & Chen, J.-F. (1992). Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chemistry, 69(1), 60-65. Jane, J.-l., Chen, Y., Lee, L., McPherson, A., Wong, K., Radosavljevic, M., & Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76(5), 629-637. Jane, J.-l., Wong, K.-s., & McPherson, A. E. (1997). Branch-structure difference in starches of A-and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydrate Research, 300(3), 219-227. Jayakody, L., & Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins–A review. Carbohydrate Polymers, 74(3), 691-703. Jo, A. R., Kim, H. R., Choi, S. J., Lee, J. S., Chung, M. N., Han, S. K., Park, C.-S., & Moon, T. W. (2016). Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification. Carbohydrate Polymers, 143, 164-171. Karlsson, M. E., Leeman, A. M., Björck, I. M., & Eliasson, A.-C. (2007). Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/amylopectin ratios. Food Chemistry, 100(1), 136-146. Katz, J., & Derksen, J. (1930). Abhandlungen zur physikalischen Chemie der Stärke und der Brotbereitung. Zeitschrift fur Physikalische Chemie, 150(1), 81-89. Kaur, L., & Singh, J. (2016). Starch: Modified Starches. In Encyclopedia of Food and Health (pp. 152-159). Oxford: Academic Press. Kawabata, A., Takase, N., Miyoshi, E., Sawayama, S., Kimura, T., & Kudo, K. (1994). Microscopic observation and x‐ray diffractometry of heat/moisture‐treated starch granules. Starch‐Stärke, 46(12), 463-469. Khunae, P., Tran, T., & Sirivongpaisal, P. (2007). Effect of heat‐moisture treatment on structural and thermal properties of rice starches differing in amylose content. Starch‐Stärke, 59(12), 593-599. Leeman, A. M., Karlsson, M. E., Eliasson, A.-C., & Björck, I. M. (2006). Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio. Carbohydrate Polymers, 65(3), 306-313. Lu, S., Chen, C.-Y., & Lii, C. (1996). Gel-chromatography fractionation and thermal characterization of rice starch affected by hydrothermal treatment. Cereal Chemistry, 73(1), 5-11. Maache-Rezzoug, Z., Zarguili, I., Loisel, C., Queveau, D., & Buleon, A. (2008). Structural modifications and thermal transitions of standard maize starch after DIC hydrothermal treatment. Carbohydrate Polymers, 74(4), 802-812. Matheson, N. K., & Welsh, L. A. (1988). Estimation and fractionation of the essentially unbranched (amylose) and branched (amylopectin) components of starches with concanavalin A. Carbohydrate Research, 180(2), 301-313. Mei, X., Mu, T.-H., & Han, J.-J. (2010). Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method. Journal of Agricultural and Food Chemistry, 58(12), 7305-7310. Miles, M. J., Morris, V. J., Orford, P. D., & Ring, S. G. (1985). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 135(2), 271-281. Miyoshi, E. (2002). Effects of Heat‐Moisture Treatment and Lipids on Gelatinization and Retrogradation of Maize and Potato Starches. Cereal Chemistry, 79(1), 72-77. Molavi, H., & Razavi, S. M. A. (2018a). Steady Shear Rheological Properties of Native and Hydrothermally Modified Persian Acorn (Quercus brantii Lindle.) Starches. Starch - Stärke, 70(3-4), 1700156. Molavi, H., & Razavi, S. M. A. (2018). Dynamic rheological and textural properties of acorn (Quercus brantii Lindle.) starch: Effect of single and dual hydrothermal modifications. Starch‐Stärke, 1800086. Molavi, H., Razavi, S. M. A., & Farhoosh, R. (2018). Impact of hydrothermal modifications on the physicochemical, morphology, crystallinity, pasting and thermal properties of acorn starch. Food Chemistry, 245, 385-393. Morrison, W., & Tester, R. (1994). Properties of damaged starch granules. IV. Composition of ball-milled wheat starches and of fractions obtained on hydration. Journal of Cereal Science, 20(1), 69-77. Nishinari, K. (1997). Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids. Colloid and Polymer Science, 275(12), 1093. Oboh, S., Ologhobo, A., & Tewe, O. (1989). Some aspects of the biochemistry and nutritional value of the sweet potato (Ipomea batatas). Food Chemistry, 31(1), 9-18. Ortega-Ojeda, F. E., Larsson, H., & Eliasson, A.-C. (2004a). Gel formation in mixtures of amylose and high amylopectin potato starch. Carbohydrate Polymers, 57(1), 55-66. Ortega-Ojeda, F. E., Larsson, H., & Eliasson, A.-C. (2004b). Gel formation in mixtures of high amylopectin potato starch and potato starch. Carbohydrate Polymers, 56(4), 505-514. Park, E. Y., Ma, J.-G., Kim, J., Lee, D. H., Kim, S. Y., Kwon, D.-J., & Kim, J.-Y. (2018). Effect of dual modification of HMT and crosslinking on physicochemical properties and digestibility of waxy maize starch. Food Hydrocolloids, 75, 33-40. Peat, S., Pirt, S., & Whelan, W. (1952). Enzymic synthesis and degradation of starch. Part XV. β-Amylase and the constitution of amylose. Journal of the Chemical Society (Resumed), 705-713. Rahman, S. M., Wheatley, C., & Rakshit, S. K. (2003). Selection of sweet potato variety for high starch extraction. International Journal of Food Properties, 6(3), 419-430. Rao, M. A. (2014). Flow and functional models for rheological properties of fluid foods. In Rheology of Fluid, Semisolid, and Solid Foods (pp. 27-61): Springer. Ravindran, V., Ravindran, G., Sivakanesan, R., & Rajaguru, S. B. (1995). Biochemical and nutritional assessment of tubers from 16 cultivars of sweet potato (Ipomoea batatas L.). Journal of Agricultural and Food Chemistry, 43(10), 2646-2651. Ring, S. G., Colonna, P., I'Anson, K. J., Kalichevsky, M. T., Miles, M. J., Morris, V. J., & Orford, P. D. (1987). The gelation and crystallisation of amylopectin. Carbohydrate Research, 162(2), 277-293. Schoch, T. (1964). Swelling power and solubility of granular starches. In Methods in carbohydrate chemistry (Vol. 4, pp. 106-108). Seguine, E. (1988). Casson plastic viscosity and yield value: what they are and what they mean to the confectioner. Manuf. Confect, 11, 57-63. Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21(1), 1-22. Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219-231. Stute, R. (1992). Hydrothermal Modification of Starches: The Difference between Annealing and Heat/Moisture‐Treatment. Starch‐Stärke, 44(6), 205-214. Swinkels, J. (1985). Composition and properties of commercial native starches. Starch‐Stärke, 37(1), 1-5. Takaya, T., Sano, C., & Nishinari, K. (2000). Rheological studies on the effects of the temperature of heat-moisture treatment on the retrogradation of corn starch. In Hydrocolloids (pp. 343-346): Elsevier. Takeda, C., Takeda, Y., & Hizukuri, S. (1983). Physicochemical properties of lily starch. Cereal Chemistry, 60(3), 212-216. Takeda, Y., Hizukuri, S., & Juliano, B. O. (1989). Structures and amounts of branched molecules in rice amyloses. Carbohydrate Research, 186(1), 163-166. Takeda, Y., Hizukuri, S., Takeda, C., & Suzuki, A. (1987). Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohydrate Research, 165(1), 139-145. Tattiyakul, J., Naksriarporn, T., Pradipasena, P., & Miyawaki, O. (2006). Effect of moisture on hydrothermal modification of yam Dioscorea hispida Dennst starch. Starch‐Stärke, 58(3‐4), 170-176. Teixeira, N. d. C., Queiroz, V. A. V., Rocha, M. C., Amorim, A. C. P., Soares, T. O., Monteiro, M. A. M., de Menezes, C. B., Schaffert, R. E., Garcia, M. A. V. T., & Junqueira, R. G. (2016). Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Food Chemistry, 197, Part A, 291-296. Tester, R. F. (1997). Properties of damaged starch granules: composition and swelling properties of maize, rice, pea and potato starch fractions in water at various temperatures. Food Hydrocolloids, 11(3), 293-301. Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. Thitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin. Carbohydrate Polymers, 54(4), 489-498. Tian, S., Rickard, J., & Blanshard, J. (1991). Physicochemical properties of sweet potato starch. Journal of the Science of Food and Agriculture, 57(4), 459-491. Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3), 1031-1064. Trung, P. T. B., Ngoc, L. B. B., Hoa, P. N., Tien, N. N. T., & Hung, P. V. (2017). Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. International Journal of Biological Macromolecules, 105, 1071-1078. Varatharajan, V., Hoover, R., Liu, Q., & Seetharaman, K. (2010). The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydrate Polymers, 81(2), 466-475. Vermeylen, R., Goderis, B., & Delcour, J. A. (2006). An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers, 64(2), 364-375. Wang, H., Zhang, B., Chen, L., & Li, X. (2016a). Understanding the structure and digestibility of heat-moisture treated starch. International Journal of Biological Macromolecules, 88, 1-8. Wang, L., Xie, B., Shi, J., Xue, S., Deng, Q., Wei, Y., & Tian, B. (2010). Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocolloids, 24(2–3), 208-216. Wang, S., Nie, S., & Zhu, F. (2016b). Chemical constituents and health effects of sweet potato. Food Research International, 89, 90-116. Xia, H., Li, Y., & Gao, Q. (2016). Preparation and properties of RS4 citrate sweet potato starch by heat-moisture treatment. Food Hydrocolloids, 55, 172-178. Xin, X., Borzacchiello, A., Netti, P., Ambrosio, L., & Nicolais, L. (2004). Hyaluronic-acid-based semi-interpenetrating materials. Journal of Biomaterials Science, Polymer Edition, 15(9), 1223-1236. You, S., Stevenson, S., Izydorczyk, M., & Preston, K. (2002). Separation and characterization of barley starch polymers by a flow field-flow fractionation technique in combination with multiangle light scattering and differential refractive index detection. Cereal Chemistry, 79(5), 624-630. Yu, L., & Christie, G. (2005). Microstructure and mechanical properties of orientated thermoplastic starches. Journal of Materials Science, 40(1), 111-116. Zavareze, E. d. R., & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83(2), 317-328. Zhu, F., Yang, X., Cai, Y. Z., Bertoft, E., & Corke, H. (2011). Physicochemical properties of sweetpotato starch. Starch‐Stärke, 63(5), 249-259. Zobel, H. (1988). Starch crystal transformations and their industrial importance. Starch‐Stärke, 40(1), 1-7.
摘要: 
本研究以台中市龍井地區生產之台農57號與台農66號甘藷為原料,探討濕熱處理(水分20~30%,105℃,2小時)對其澱粉理化性質之影響。台農57號與台農66號生鮮甘藷之水分各別為67.32%與75.27%,其澱粉產率各別為37.18%與23.89%(乾基)。觀察澱粉經過濕熱修飾前後的外觀型態可發現,在不同水分含量條件下進行濕熱處理雖沒有顯著影響澱粉之十字偏光性,然部份澱粉顆粒臍的部位產生空洞或表面出現凹陷。當濕熱處理水分含量上升,其破損澱粉含量亦有上升的趨勢,而抗性澱粉則是隨著濕熱處理水分含量上升而有下降的趨勢。X光繞射圖譜可以觀察到,經過濕熱處理過後,甘藷澱粉的結晶型態由原本的Ca-type隨著水分含量的增加逐漸地轉為A-type,而相對結晶度則有先升後降的趨勢,且降至較未處理者低。快速黏度分析與示差熱掃描熱分析的結果顯示甘藷澱粉經過濕熱處理過後,其糊化溫度上升、黏度下降以及缺乏明顯的糊化尖峰黏度和崩裂黏度。所有澱粉樣品之膨潤力與溶解度隨著溫度增加上升,但甘藷澱粉經過濕熱處理後在超過糊化溫度時膨潤力與溶解度顯著地降低。10%甘藷澱粉糊屬於非牛頓剪稀性流體,動態黏彈結果顯示澱粉膠性質隨著濕熱處理水分上升從弱膠轉為強膠,模量亦隨之增加。

In the present study, the effects of heat-moisture treatment( HMT, under 20%, 25% and 30% moisture level, 105℃, 2 hours) on physicochemical and structure properties of Tainung No.57 and Tainung No.66 sweet potato starches originated from Longjing were investigated. The water content of Tainung No.57 and Tainung No.66 sweet potato was 67.32% and 75.27%, and the yield of its starch was 67.32% and 23.89%(dry base), respectively. The results showed that the birefringence of HMT starch samples of two spices was not changed, but it had pore at hilum and found concavity on granule surface after heat-moisture treatment under different moisture level. As moisture level of heat-moisture treatment increased, the content of damage starch increased gradually, and the content of resistant starch decreased gradually. Furthermore, the crystalline pattern of native and HMT starch samples changed from Ca type into A type gradually, and compared native starch with HMT starch samples, the relative crystallinity increased and then decreased. Moreover, the HMT starch samples of two exhibited increased pasting temperature, reduced viscosities, and no longer exhibited traditional pasting profiles for lack of a true peak viscosity and no breakdown. The swelling power and solubility of all starches increased while temperature increased, as moisture level of heat-moisture treatment increased, the swelling power and solubility decreased when exceeded gelatinization temperature. Rheological behavior of 10% sweet potato starch paste belongs to shear-thinning fluid. Dynamic viscoelastic results also revealed that the sweet potato paste belonged to weak gels, as moisture level of heat-moisture treatment increased, sweet potato starch paste changed into strong gel and the modulus of 10% sweet potato paste increased.
URI: http://hdl.handle.net/11455/96033
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-15起公開。
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105043406-1.pdf4.04 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.