Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96051
標題: Therapeutic Treatment with Ascorbate Rescues Mice from Heat Stroke-induced Death and Reduces Focal Cerebral Ischemia-induced Brain Infarction in Rats
維生素C降低熱中風小鼠死亡及減少局部腦缺血大鼠腦梗塞的治療功效
作者: Chia-Yu Chang
張嘉祐
關鍵字: 維生素C;熱中風;全身性發炎反應;暫時性中大腦動脈阻塞;血腦屏障破壞;ascorbate;heat stroke;systemic inflammatory response;transient middle cerebral artery occlusion;blood brain barrier disruption
引用: Chapter 1 1.Berger, M.M. and Oudemans-van Straaten H.M.. Vitamin C supplementation in the critically ill patient. Curr Opin Clin Nutr Metab Care.18(2):193-201; 2015. 2.Oudemans-van Straaten, H.M.; Spoelstra-de Man A.M.; De Waard M.C.. Vitamin C revisited. Crit Care.18(4): 460;2014. 3.Mandl, J.; Szarka A.; Banhegyi G. Vitamin C: update on physiology and pharmacology. Br J Pharmacol. 157(7):1097-110;2009. 4.Duconge, J. et al. Pharmacokinetics of vitamin C: insights into the oral and intravenous administration of ascorbate. P R Health Sci J.27(1): 7-19;2008. 5.Schorah, C.J. et al. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am J Clin Nutr. 63(5): 760-5;1996. 6.Levine, M.; Padayatty S.J.; M.G. Espey. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr. 2(2):78-88; 2011. 7.Jackson, T.S., et al. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res. 83(9):916-22; 1998 8.Taylor, E.N., M.J. Stampfer, and G.C. Curhan. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Am Soc Nephrol. 15(12):3225-32;2004. 9.Kahn, S.A., R.J. Beers, and C.W. Lentz. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J Burn Care Res. 32(1): 110-7;2011. 10.Andresen, H.M., H.T. Regueira, and F. Leighton. Oxidative stress in critically ill patients. Rev Med Chil.134(5): 649-56;2006. 11.Frey, R.S., M. Ushio-Fukai, and A.B. Malik, NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal. 11(4): 791-810;2009. 12.Wu, F., et al. Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells. Free Radic Biol Med. 42(1):124-31;2007. 13.Wu, F., K. Tyml, and J.X. Wilson. iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells. J Cell Physiol. 217(1): 207-14;2008. 14.Wu, F., K. Tyml, and J.X. Wilson. Ascorbate inhibits iNOS expression in endotoxin- and IFN gamma-stimulated rat skeletal muscle endothelial cells. FEBS Lett. 520(1-3): 122-6;2002. 15.Mortensen, A. and J. Lykkesfeldt. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies. Nitric Oxide. 36: 51-7;2014. 16.Wu, F., J.X. Wilson, and K. Tyml. Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integr Comp Physiol. 285(1): R50-6; 2003. 17.Wu, F., J.X. Wilson, and K. Tyml. Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radic Biol Med. 37(8): 1282-9;2004 18.Wilson, J.X. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium. Biofactors. 35(1):5-13;2009. 19.Tsai, M.S., et al. Ascorbic acid mitigates the myocardial injury after cardiac arrest and electrical shock. Intensive Care Med. 37(12): 2033-40;2011. 20.Lloberas, N. et al., Postischemic renal oxidative stress induces inflammatory response through PAF and oxidized phospholipids. Prevention by antioxidant treatment. Faseb j.16(8): 908-10;2002. 21.Ulug, B.T. et al. The effect of vitamin C on ischemia reperfusion injury because of prolonged tourniquet application with reperfusion intervals. Ann Plast Surg.62(2):194-9; 2009. 22.Tanaka, H., et al., Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg.135(3):326-31; 2000. 23.Long, C.L., et al., Ascorbic acid dynamics in the seriously ill and injured. J Surg Res.109(2): 144-8;2003. 24.Carnes, C.A., et al., Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 89(6): E32-8;2001. 25.Bouchama, A. ;J.P. Knochel. Heat stroke. N Engl J Med.346(25):1978-88; 2002. 26.Patz, J.A. et al., Impact of regional climate change on human health. Nature. 438(7066): 310-7;2005. 27.Roberts, G.T., et al., Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke: a study in baboon model. Arterioscler Thromb Vasc Biol.28(6):1130-6;2008. 28.Chen, S.H., M.T. Lin, and C.P. Chang, Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol. 11(2): 129-40;2013. 29.Kao, T.Y.; Chio C.C.; and M.T. Lin. Hypothalamic dopamine release and local cerebral blood flow during onset of heatstroke in rats. Stroke.25(12):2483-6; discussion 2486-7;1994. 30.Victor, V.M., et al., Role of free radicals in sepsis: antioxidant therapy. Curr Pharm Des.11(24): 3141-58;2005. 31.McGregor, G.P. and H.K. Biesalski, Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care. 9(6):697-703;2006. 32.Wilson, J.X., Evaluation of vitamin C for adjuvant sepsis therapy. Antioxid Redox Signal. 19(17): 2129-40;2013. 33.Lakhan, S.E., A. Kirchgessner, and M. Hofer, Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 7: 97;2009. 34.Yokoyama, T. et al. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community. The Shibata study. Stroke. 31(10): 2287-94;2000. 35.Myint, P.K. et al. Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20 649 participants of the European Prospective Investigation into Cancer Norfolk prospective population study. Am J Clin Nutr. 87(1): 64-9;2008. 36.Sanchez-Moreno, C. et al. Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke. 35(1): 163-8; 2004. 37.Chen, G.C. et al., Vitamin C intake, circulating vitamin C and risk of stroke: a meta-analysis of prospective studies. J Am Heart Assoc.2(6): e000329; 2013. 38.Jung, J.E. et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol. 41(2-3): 172-9; 2010. 39.Fagan, S.C. et al. Targets for vascular protection after acute ischemic stroke. Stroke. 35(9): 2220-5;2004. 40.Henry, P.T. and M.J. Chandy, Effect of ascorbic acid on infarct size in experimental focal cerebral ischaemia and reperfusion in a primate model. Acta Neurochir (Wien). 140(9): 977-80;1998. 41.Stamford, J.A. et al., Ascorbic acid is neuroprotective against global ischaemia in striatum but not hippocampus: histological and voltammetric data. Brain Res. 835(2): 229-40;1999. 42.Dhar-Mascareno,M.; J.M.Carcamo ; D.W.Golde. Hypoxia-reoxygenation induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C. Free Radic Biol Med. 38(10): 1311-22;2005. 43.Allahtavakoli, M. et al. Ascorbic Acid Reduces the Adverse Effects of Delayed Administration of Tissue Plasminogen Activator in a Rat Stroke Model. Basic Clin Pharmacol Toxicol. 117(5): 335-9;2015. Chapter 2 [1]Mandl, J.; Szarka,A.; Banhegyi,G. Vitamin C: update on physiology and pharmacology.Br J Pharmacol.157(7): 1097-110; 2009. [2]McGregor, G.P.; Biesalski, H.K. Rationale and impact of vitamin C in clinical nutrition.Curr Opin Clin Nutr Metab Care.9(6): 697-703;2006. [3]Victor, V.M.; Rocha, M.; Esplugues, J. V.; De la Fuente, M. Role of free radicals in sepsis: antioxidant therapy. Curr Pharm Des. 11(24): 3141-58; 2005. [4]Wu, F.;Wilson,J.X.; Tyml,K. Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice.Am J Physiol Regul Integr Comp Physiol.285(1): R50-6;2003. [5]Wu, F.;Wilson, J.X.; Tyml,K. Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radic Biol Med.37(8): 1282-9;2004. [6]Wilson, J.X. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium.Biofactors.35(1): 5-13;2009. [7]Bouchama, A.; Knochel,J.P. Heat stroke.N Engl J Med.346(25): 1978-88; 2002. [8]Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J. A. Impact of regional climate change on human health. Nature. 438(7066): 310-7; 2005. [9]Roberts,G.T.; Ghebeh, H.; Chishti, M.; Al-Mohanna,F; El-Sayed, R.; Al-Mohanna, F.; Bouchama, A. Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke: a study in baboon model. Arterioscler Thromb Vasc Biol. 28(6): 1130-6; 2008. [10]Chen,S.H.; Lin,M.T.; Chang,C.P.Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol. 11(2): 129-40;2013. [11]Kao, T.Y.;Chio,C.C.; Lin,M.T. Hypothalamic dopamine release and local cerebral blood flow during onset of heatstroke in rats. Stroke.25(12): 2483-6; discussion 2486-7;1994. [12]Chatterjee, S.; Premachandran, S.; Sharma, D.; Bagewadikar, R. S.; Poduval, T. B. Therapeutic treatment with L-arginine rescues mice from heat stroke-induced death: physiological and molecular mechanisms. Shock 24(4): p. 341-7; 2005. [13]Pulsinelli, W.A.;Brierley,J.B.;Plum, F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol.11(5):491-8;1982. [14]Reagan-Shaw, S.;Nihal, M.;Ahmad, N. Dose translation from animal to human studies revisited. Faseb j. 22(3):659-61; 2008 [15]Padayatty, S.J.; Sun, H.; Wang,Y.; Riordan, H. D.; Hewitt, S. M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 140(7): 533-7; 2004. [16]Schorah, C.J.; Downing, C.; Piripitsi, A.; Gallivan, L.; Al-Hazaa, A.; Sanderson, H. M. J.; Bodenham, A. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am J ClinNutr. 63(5): 760-5; 1996. [17]Crandon, J.H.; Landau, B.; Mikal, S.; Balmanno, J.; Jefferson, M.; Mahoney, N. Ascorbic acid economy in surgical patients as indicated by blood ascorbic acid levels. N Engl J Med. 258(3): 105-13; 1958. [18]Long, C.L.; Maull, K. I.; Krishnan, R. S.; Laws, H. L.; Geiger, J. W.; Borghesi, L.; Franks, W.; Lawson, T. C.; Sauberlich, H. E. Ascorbic acid dynamics in the seriously ill and injured. J SurgRes. 109(2): 144-8; 2003. [19]Hartel, C.; Strunk, T.; Bucsky, P.; Schultz, C. Effects of vitamin C on intracytoplasmic cytokine production in human whole blood monocytes and lymphocytes. Cytokine. 27(4-5): 101-6; 2004. [20]Bowie, A.G.;O'Neill, L.A. Vitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase.J Immunol.165(12): 7180-8;2000. [21]Huang, Y.N.; Lai, C. C.; Chiu, C. T.; Lin, J. J.; Wang, J. Y.L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-kappa B translocation in cortical neurons/glia Cocultures. PLoS One. 9(7): e97276; 2014. [22]Zhao, B.; Fei, J.; Chen, Y.; Ying, Y. L.; Ma, L.; Song, X. Q.; Huang, J.; Chen, E. Z.; Mao, E. Q. Vitamin C treatment attenuates hemorrhagic shock related multi-organ injuries through the induction of heme oxygenase-1.BMC Complement Altern Med.14: 442;2014. [23]Cunha, F.Q.; Assreuy, J.; Moss, D. W.; Rees, D.; Leal, L. M.; Moncada, S.; Carrier, M.;O'Donnell, C. A.; Liew, F. Y. Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-1-beta. Immunology. 81(2):211-5; 1994. [24]Trzeciak, S.; Cinel, I.;Dellinger, Phillip;Shapiro, R. N. I.;Arnold, R. C.; Parrillo, J. E.; Hollenberg, S. M. Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med. 15(5):399-413; 2008. [25]Chang, C.P.; Lee, C. C.; Chen, S. H.; Lin, M. T. Aminoguanidine protects against intracranial hypertension and cerebral ischemic injury in experimental heatstroke. J Pharmacol Sci. 95(1):56-64; 2004. [26]Bouchama,A.; Roberts, G.; AlMohanna, F.; El-Sayed, R.; Lach,B.; Chollet-Martin, S.; Ollivier, V.; AlBaradei, R.; Loualich, A.; Nakeeb, S.; Eldali, A.; de Prost, D. Inflammatory, hemostatic, and clinical changes in a baboon experimental model for heatstroke. J Appl Physiol (1985).98(2): 697-705; 2005. [27]Schouten, M.; Wiersinga, W.; J.Levi, M.; van der Poll, T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 83(3):536-45; 2008. [28]Camerer, E., Kolsto,A.B.; Prydz,H. Cell biology of tissue factor, the principal initiator of blood coagulation.Thromb Res.81(1): 1-41;1996. [29]Opal, S.M. Phylogenetic and functional relationships between coagulation and the innate immune response. Crit Care Med.28(9 Suppl): S77-80;2000. [30]uyendyk,J.P.;Piper,J.D.;Tencati,M.;Reddy,K.;Holscher,T.; Zhang,R.;Luchoomun, J.;Chen, X.; Min,W.; Kunsch, C.; Mackman, N.A novel class of antioxidants inhibit LPS induction of tissue factor by selective inhibition of the activation of ASK1 and MAP kinases. Arterioscler Thromb Vasc Biol. 27(8): 1857-63; 2007. [31]Brisseau, G.F.; Dackiw, A. P.; Cheung, P. Y.; Christie, N.; Rotstein, O. D. Posttranscriptional regulation of macrophage tissue factor expression by antioxidants. Blood. 85(4): 1025-35; 1995. [32]Hotchkiss, R.S.; Nicholson,D.W. Apoptosis and caspases regulate death and inflammation in sepsis.Nat Rev Immunol.6(11): 813-22; 2006. [33]Katschinski, D.M.; Boos, K.; Schindler, S. G.; Fandrey, J. Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem. 275(28):21094-8; 2000. [34]Hsu, Y.L.; Yu, H. S.; Lin, H. C.; Wu, K. Y.; Yang, R. C.; Kuo, P. L. Heat shock induces apoptosis through reactive oxygen species involving mitochondrial and death receptor pathways in corneal cells. Exp Eye Res. 93(4):405-12; 2011. [35]Fowler, A.A., 3rd.;Syed, A. A.; Knowlson, S.; Sculthorpe, R.; Farthing, D.; DeWilde, C.; Farthing, C. A.; Larus, T. L.; Martin, E.; Brophy, D. F.; Gupta, S.; Fisher, B. J.; Natarajan, R. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 12: 32; 2014 Chapter 3 [1]Lakhan, S.E., A. Kirchgessner, and M. Hofer. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 7: 97;2009. [2]Yokoyama, T. et al. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community. The Shibata study. Stroke. 31(10): 2287-94; 2000. [3]Myint, P.K. et al. Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20 649 participants of the European Prospective Investigation into Cancer Norfolk prospective population study. Am J Clin Nutr. 87(1): 64-9; 2008. [4]Sanchez-Moreno, C. et al. Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke. 35(1): 163-8; 2004. [5]Chen, G.C. et al. Vitamin C intake, circulating vitamin C and risk of stroke: a meta-analysis of prospective studies. J Am Heart Assoc. 2(6): e000329; 2013. [6]Jung, J.E., et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol. 41(2-3): 172-9; 2010. [7]Fagan, S.C., et al. Targets for vascular protection after acute ischemic stroke. Stroke. 35(9): 2220-5;2004. [8]Henry, P.T. and Chandy M.J. Effect of ascorbic acid on infarct size in experimental focal cerebral ischaemia and reperfusion in a primate model. Acta Neurochir (Wien). 140(9): 977-80;1998. [9]Stamford, J.A., et al. Ascorbic acid is neuroprotective against global ischaemia in striatum but not hippocampus: histological and voltammetric data. Brain Res. 835(2): 229-40;1999. [10]Dhar-Mascareno, M.; Carcamo J.M.; D.W. Golde. Hypoxia-reoxygenation induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C. Free Radic Biol Med. 38(10): 1311-22;2005. [11]Allahtavakoli, M., et al. Ascorbic Acid Reduces the Adverse Effects of Delayed Administration of Tissue Plasminogen Activator in a Rat Stroke Model. Basic Clin Pharmacol Toxicol. 117(5):335-9;2015. [12]Ansari, S., et al. Intraluminal middle cerebral artery occlusion (MCAO) model for ischemic stroke with laser doppler flowmetry guidance in mice. J Vis Exp. (51): e2879;2011 [13]O'Neill, M.J.; J.A. Clemens. Rodent models of global cerebral ischemia. Curr Protoc Neurosci. Chapter 9: Unit 9.5;2001. [14]Chen, J., et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 32(11): 2682-8;2001. [15]Swanson, R.A., et al. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 10(2): 290-3;1990. [16]Lee, S., et al. Middle cerebral artery occlusion methods in rat versus mouse models of transient focal cerebral ischemic stroke. Neural Regen Res. 9(7): 757-8;2014. [17]Wang, C.X., et al. Rosiglitazone alone or in combination with tissue plasminogen activator improves ischemic brain injury in an embolic model in rats. J Cereb Blood Flow Metab. 29(10): 1683-94;2009. [18]Reagan-Shaw, S.;M. Nihal ; N. Ahmad. Dose translation from animal to human studies revisited. Faseb j. 22(3): 659-61;2008. [19]Padayatty, S.J., et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 140(7): 533-7;2004. [20]Schorah, C.J., et al. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am J Clin Nutr. 63(5): 760-5;1996. [21]Crandon, J.H., et al. Ascorbic acid economy in surgical patients as indicated by blood ascorbic acid levels. N Engl J Med. 258(3): 105-13;1958. [22]Long, C.L., et al. Ascorbic acid dynamics in the seriously ill and injured. J Surg Res. 109(2): 144-8;2003. [23]May, J.M. Vitamin C transport and its role in the central nervous system. Subcell Biochem. 56: 85-103;2012. [24]Jackson, T.S., et al. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res. 83(9): 916-22; 1998. [25]Kahn, S.A.; R.J. Beers ; C.W. Lentz. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J Burn Care Res. 32(1): 110-7; 2011. [26]Traxer, O., et al. Vitamin C and stone risk. Review of the literature. Prog Urol.13(6): 1290-4; 2003. [27]Tanaka, H., et al. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg. 135(3): 326-31;2000. [28]Malinski, T., et al. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 13(3): 355-8;1993. [29]Huang, Z., et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 265(5180): 1883-5;1994. [30]Niwa, M., et al. Time course of expression of three nitric oxide synthase isoforms after transient middle cerebral artery occlusion in rats. Neurol Med Chir (Tokyo). 41(2): 63-72; discussion 72-3; 2001. [31]Iadecola, C.; F. Zhang ;X. Xu. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol. 268(1 Pt 2): R286-92;1995. [32]Love, S. Oxidative stress in brain ischemia. Brain Pathol. 9(1): 119-31;1999. [33]Dohi, K., et al. Peroxynitrite and caspase-3 expression after ischemia/reperfusion in mouse cardiac arrest model. Acta Neurochir Suppl. 86: 87-91; 2003. [34]Wong, C.H.; Crack P.J. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem. 15(1): 1-14; 2008. [35]Tak, P.P. ; Firestein G.S. NF-kappaB: a key role in inflammatory diseases. J Clin Invest.107(1): 7-11; 2001. [36]Broughton, B.R., D.C. Reutens, and C.G. Sobey, Apoptotic mechanisms after cerebral ischemia. Stroke. 40(5): e331-9; 2009. [37]Gu, Y.; Dee C.M.; Shen J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci (Schol Ed). 3: 1216-31;2011. [38]Rosenberg, G.A.; Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. 22(5): E4; 2007. [39]Oudemans-van Straaten, H.M.; Spoelstra-de Man A.M. ; de Waard M.C. Vitamin C revisited. Crit Care.18(4): 460; 2014. Chapter 4 [1]Oudemans-van Straaten,H.M.; Spoelstra-de Man,A.M. ; de Waard,M.C. Vitamin C revisited. Crit Care.18(4): 460;2014. [2]Berger, M.M. ; Oudemans-van Straaten,H.M. Vitamin C supplementation in the critically ill patient. Curr Opin Clin Nutr Metab Care.18(2):193-201;2015. [3]Fowler,A.A. 3rd, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med.12: 32;2014. [4]Zabet, M.H. et al. Effect of high-dose Ascorbic acid on vasopressor's requirement in septic shock. J Res Pharm Pract.5(2):94-100;2016. [5]Jin, R. ; Yang,G. ; Li,G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis.38(3): 376-85;2010. [6]Wang, X. et al. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke.35(11 Suppl 1): 2726-30;2004. [7]Wang, X.; Rosell,A.; Lo,E.H. Targeting extracellular matrix proteolysis for hemorrhagic complications of tPA stroke therapy. CNS Neurol Disord Drug Targets.7(3): 235-42;2008.
摘要: 
口服維生素C因其有限的生物利用率,因此對氧化壓力相關的疾病的效用並不明顯。然而,卻有證據顯示經由靜脈補充維生素C在危急及嚴重的病人可明顯增加其效用。
熱中風(即俗稱的中暑)被定義為過度高溫所導致的全身性炎症反應及多重器官功能衰竭,其主要症狀表現為中樞神經系統障礙,如譫妄,抽搐和昏迷。熱中風的體溫、免疫及凝血機制的失調和組織器官損傷的反應非常類似於敗血症,因此可能有相似的病理機轉。本研究利用高致死率的熱中風小鼠模型所引發的模擬敗血症全身炎症反應來測試我們的研究假設:超生理劑量的維生素C在重症治療上可以具有療效。我們發現在熱中風的小鼠,維生素C藉由降低熱中風誘發的全身性炎症,凝血異常反應和體溫調節功能障礙及之後的多重器官損傷(尤其是腦下視丘),因而降低熱中風小鼠死亡。
腦中風是一個重大的公共衛生問題,是成年人排名第三位最常見的死亡原因。局部缺血性的腦中風可導致嚴重的神經系統後遺症,造成終身殘疾。本研究,我們假設於暫時性局部腦缺血的大鼠模型,使用高劑量維生素C可減緩氧化壓力引發的腦缺血再灌注損傷而發揮其療效。的確,我們發現超生理劑量的維生素C,相較於對照組,可藉由減緩神經細胞凋亡及血腦屏障的破壞,進而減少腦梗塞體積和腦水腫及改善神經功能的損傷。
總之,我們的研究結果支持超生理劑量的維生素C可能在重症上有治療功效的假設和概念。靜脈注射高劑量維生素C的給予提供了一種便宜,強效和多重作用的抗氧化劑治療,尤其是對循環的復甦有特別的效果。在重症病人,今後的研究重點應放在使用短期高劑量靜脈注射維生素C作為循環復甦的藥物,或結合其他抗氧化劑,儘早地介入氧化傷害的連鎖反應,優化血管和微循環,以降低細胞的損傷。

The impact of ascorbate (vitamin C, ascorbic acid) on oxidative stress-related diseases is moderate because of its limited oral bioavailability and rapid clearance. However, parenteral administration can increase the benefit of ascorbate supplementation as is evident in critically ill patients.
Heatstroke is defined as a form of excessive hyperthermia associated with a systemic inflammatory response that results in multiple organ dysfunctions in which central nervous system disorders such as delirium, convulsions, and coma are predominant. The thermoregulatory, immune, coagulation and tissue injury responses of heatstroke closely resemble those observed during sepsis and are likely mediated by similar cellular mechanisms. This study was performed by using the characteristic high lethality rate and sepsis-mimic systemic inflammatory response of a murine model of heat stroke to test our hypothesis that supra-physiological doses of ascorbate may have therapeutic use in critical care. We demonstrated that parenteral administration of ascorbate abrogated the lethality and thermoregulatory dysfunction in murine model of heat stroke by attenuating heat stroke-induced accelerated systemic inflammatory, coagulation responses and the resultant multiple organ injury, especially in hypothalamus.
Stroke is a major public health problem and ranks third most common cause of death in adults worldwide. Focal ischemic stroke can cause permanent disability and lead to severe neurological sequelae. In this study, we hypothesized that high- dose ascorbate may exert its therapeutic effects through attenuating oxidative stress driven cerebral ischemia-reperfusion injury in a rat model of transient focal cerebral ischemia. Indeed, we did demonstrate that administration of supra-physiological doses of ascorbate significantly improved neurological deficits, the sequelae of brain infarction and edema, in a rat model of transient focal cerebral ischemia by attenuating cerebral neuronal apoptosis and blood brain barrier disruption.
Overall, our findings support the hypothesis and notion that supra-physiological doses of ascorbate may have therapeutic use in critical care. Parenteral administration of high-dose ascorbate provides an inexpensive, strong and multifaceted antioxidant therapy, especially robust for resuscitation of the circulation. In critically ill patients, future research should focus on the use of short-term high-dose intravenous ascorbate as a resuscitation drug, or combined with other antioxidants to intervene as early as possible in the oxidant cascade in order to optimize macrocirculation and microcirculation and to limit cellular injury.
URI: http://hdl.handle.net/11455/96051
Rights: 同意授權瀏覽/列印電子全文服務,2019-11-28起公開。
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-105-8099043001-1.pdf4 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.