Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/96071
標題: | Transgenerational impacts of dietary bioactive components on methyl group homeostasis 飲食中之活性成分對體內甲基供應平衡之跨代影響 |
作者: | Yi-Ching Chang 張怡璟 |
關鍵字: | 植化素;硫-腺核苷甲硫胺酸;單碳代謝;跨代研究;phytochemicals;S-adenosylmethionine (adoMet);one carbon metabolism | 引用: | Reference List Ali,K.M., Kedhari,S.M., Hamza,A., Quraishi,U., Gunasekera,D., Ramesh,L., Goala,P., Al,A.U., Ansari,M.Z., Rizvi,T.A., Sharma,C., and Hussain,A. (2015). Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells. Evid. Based. Complement Alternat. Med. 2015, 412149. Bai,S., Ghoshal,K., Datta,J., Majumder,S., Yoon,S.O., and Jacob,S.T. (2005). DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol. Cell Biol. 25, 751-766. Batra,V. and Verma,P. (2014). Dietary L-methionine supplementation mitigates gamma-radiation induced global DNA hypomethylation: enhanced metabolic flux towards S-adenosyl-L-methionine (SAM) biosynthesis increases genomic methylation potential. Food Chem. Toxicol. 69, 46-54. Bauchart-Thevret,C., Stoll,B., Chacko,S., and Burrin,D.G. (2009). Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. Am. J. Physiol Endocrinol. Metab 296, E1239-E1250. Bolusani,S., Young,B.A., Cole,N.A., Tibbetts,A.S., Momb,J., Bryant,J.D., Solmonson,A., and Appling,D.R. (2011). Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. J. Biol. Chem. 286, 5166-5174. Carrera San,M.A., Garcia Paez,J.M., Garcia Sestafe,J.V., Jorge,H.E., Salvador,J., Cordon,A., and Castillo-Olivares,J.L. (1998). Selection and interaction of biomaterials used in the construction of cardiac bioprostheses. J. Biomed. Mater. Res. 39, 568-574. Caudill,M.A., Wang,J.C., Melnyk,S., Pogribny,I.P., Jernigan,S., Collins,M.D., Santos-Guzman,J., Swendseid,M.E., Cogger,E.A., and James,S.J. (2001). Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J. Nutr. 131, 2811-2818. Chiang,E.P., Wang,Y.C., Chen,W.W., and Tang,F.Y. (2009). Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J. Clin. Endocrinol. Metab 94, 1017-1025. Chiang,E.P., Wang,Y.C., and Tang,F.Y. (2007). Folate restriction and methylenetetrahydrofolate reductase 677T polymorphism decreases adoMet synthesis via folate-dependent remethylation in human-transformed lymphoblasts. Leukemia 21, 651-658. Dahlhoff,C., Worsch,S., Sailer,M., Hummel,B.A., Fiamoncini,J., Uebel,K., Obeid,R., Scherling,C., Geisel,J., Bader,B.L., and Daniel,H. (2014). Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levels. Mol. Metab 3, 565-580. Ding,Y.B., Long,C.L., Liu,X.Q., Chen,X.M., Guo,L.R., Xia,Y.Y., He,J.L., and Wang,Y.X. (2012). 5-aza-2'-deoxycytidine leads to reduced embryo implantation and reduced expression of DNA methyltransferases and essential endometrial genes. PLoS. One. 7, e45364. Ducker,G.S. and Rabinowitz,J.D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metab 25, 27-42. Fan,J., Ye,J., Kamphorst,J.J., Shlomi,T., Thompson,C.B., and Rabinowitz,J.D. (2014). Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298-302. Feussner,A., Rolinski,B., Weiss,N., Deufel,T., Wolfram,G., and Roscher,A.A. (1997). Determination of total homocysteine in human plasma by isocratic high-performance liquid chromatography. Eur. J. Clin. Chem. Clin. Biochem. 35, 687-691. Finkelstein,J.D. (1998). The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr. 157 Suppl 2, S40-S44. Finkelstein,J.D. (2007). Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin. Chem. Lab Med. 45, 1694-1699. Fleming,A. and Copp,A.J. (1998). Embryonic folate metabolism and mouse neural tube defects. Science 280, 2107-2109. Hahn,R.A., MacDonald,B.R., Simpson,P.J., Wang,L., Towner,R.D., Ho,P.P., Goodwin,M., Breau,A.P., Suarez,T., and Mihelich,E.D. (1991). Characterization of LY233569 on 5-lipoxygenase and reperfusion injury of ischemic myocardium. J. Pharmacol. Exp. Ther. 256, 94-102. Heiss,E.H., Schachner,D., Zimmermann,K., and Dirsch,V.M. (2013). Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox. Biol. 1, 359-365. Herbig,K., Chiang,E.P., Lee,L.R., Hills,J., Shane,B., and Stover,P.J. (2002). Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J. Biol. Chem. 277, 38381-38389. Ho,E., Clarke,J.D., and Dashwood,R.H. (2009). Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J. Nutr. 139, 2393-2396. Ichinohe,A., Kure,S., Mikawa,S., Ueki,T., Kojima,K., Fujiwara,K., Iinuma,K., Matsubara,Y., and Sato,K. (2004). Glycine cleavage system in neurogenic regions. Eur. J. Neurosci. 19, 2365-2370. Jiang,X., West,A.A., and Caudill,M.A. (2014). Maternal choline supplementation: a nutritional approach for improving offspring health? Trends Endocrinol. Metab 25, 263-273. Kakehi,Y. (1998). [Epidemiology and clinical features of prostate cancer in Japan]. Nihon Rinsho 56, 1969-1973. Kerns,M.L., DePianto,D., Dinkova-Kostova,A.T., Talalay,P., and Coulombe,P.A. (2007). Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc. Natl. Acad. Sci. U. S. A 104, 14460-14465. Kobayakawa,S., Miike,K., Nakao,M., and Abe,K. (2007). Dynamic changes in the epigenomic state and nuclear organization of differentiating mouse embryonic stem cells. Genes Cells 12, 447-460. Lamarre,S.G., MacMillan,L., Morrow,G.P., Randell,E., Pongnopparat,T., Brosnan,M.E., and Brosnan,J.T. (2014). An isotope-dilution, GC-MS assay for formate and its application to human and animal metabolism. Amino. Acids 46, 1885-1891. Li,Y., Saldanha,S.N., and Tollefsbol,T.O. (2014a). Impact of epigenetic dietary compounds on transgenerational prevention of human diseases. AAPS. J. 16, 27-36. Li,Y., Saldanha,S.N., and Tollefsbol,T.O. (2014b). Impact of epigenetic dietary compounds on transgenerational prevention of human diseases. AAPS. J. 16, 27-36. Lieber,C.S. and Packer,L. (2002). S-Adenosylmethionine: molecular, biological, and clinical aspects--an introduction. Am. J. Clin. Nutr. 76, 1148S-1150S. Lu,S.C. (2000). S-Adenosylmethionine. Int. J. Biochem. Cell Biol. 32, 391-395. Lu,S.C. and Mato,J.M. (2008). S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J. Gastroenterol. Hepatol. 23 Suppl 1, S73-S77. Lucas,M., Encinar,J.A., Arribas,E.A., Oyenarte,I., Garcia,I.G., Kortazar,D., Fernandez,J.A., Mato,J.M., Martinez-Chantar,M.L., and Martinez-Cruz,L.A. (2010). Binding of S-methyl-5'-thioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. J. Mol. Biol. 396, 800-820. Martinez-Chantar,M.L. (2006). S-adenosylmethionine regulates cytoplasmic HuR via AMP-activated kinase. Mattocks,D.A., Mentch,S.J., Shneyder,J., Ables,G.P., Sun,D., Richie,J.P., Jr., Locasale,J.W., and Nichenametla,S.N. (2017). Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Exp. Gerontol. 88, 1-8. McFerran,D.J. and Baguley,D.M. (2004). Tinnitus: a review. Practitioner 248, 556, 558, 563. Mitsuishi,Y., Taguchi,K., Kawatani,Y., Shibata,T., Nukiwa,T., Aburatani,H., Yamamoto,M., and Motohashi,H. (2012). Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66-79. Momb,J., Lewandowski,J.P., Bryant,J.D., Fitch,R., Surman,D.R., Vokes,S.A., and Appling,D.R. (2013). Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc. Natl. Acad. Sci. U. S. A 110, 549-554. Myzak,M.C., Dashwood,W.M., Orner,G.A., Ho,E., and Dashwood,R.H. (2006). Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J. 20, 506-508. Nallasamy,P., Si,H., Babu,P.V., Pan,D., Fu,Y., Brooke,E.A., Shah,H., Zhen,W., Zhu,H., Liu,D., Li,Y., and Jia,Z. (2014). Sulforaphane reduces vascular inflammation in mice and prevents TNF-alpha-induced monocyte adhesion to primary endothelial cells through interfering with the NF-kappaB pathway. J. Nutr. Biochem. 25, 824-833. Nelson,N.J. (2006). Migrant studies aid the search for factors linked to breast cancer risk. J. Natl. Cancer Inst. 98, 436-438. Patel,K., Dickson,J., Din,S., Macleod,K., Jodrell,D., and Ramsahoye,B. (2010). Targeting of 5-aza-2'-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucleic Acids Res. 38, 4313-4324. Peltola,M., Malmivaara,A., and Paavola,M. (2012). Introducing a knee endoprosthesis model increases risk of early revision surgery. Clin. Orthop. Relat Res. 470, 1711-1717. Pembrey,M.E., Bygren,L.O., Kaati,G., Edvinsson,S., Northstone,K., Sjostrom,M., and Golding,J. (2006). Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159-166. Perna,A.F., Ingrosso,D., De Santo,N.G., Galletti,P., and Zappia,V. (1995). Mechanism of erythrocyte accumulation of methylation inhibitor S-adenosylhomocysteine in uremia. Kidney Int. 47, 247-253. Piedrahita,J.A., Oetama,B., Bennett,G.D., van,W.J., Kamen,B.A., Richardson,J., Lacey,S.W., Anderson,R.G., and Finnell,R.H. (1999). Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat. Genet. 23, 228-232. Pike,S.T., Rajendra,R., Artzt,K., and Appling,D.R. (2010a). Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. J. Biol. Chem. 285, 4612-4620. Pike,S.T., Rajendra,R., Artzt,K., and Appling,D.R. (2010b). Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. J. Biol. Chem. 285, 4612-4620. Renner,S.S. and Meyer,K. (2001). Melastomeae come full circle: biogeographic reconstruction and molecular clock dating. Evolution 55, 1315-1324. Sah,D.W., Ray,J., and Gage,F.H. (1997). Regulation of voltage- and ligand-gated currents in rat hippocampal progenitor cells in vitro. J. Neurobiol. 32, 95-110. Schneider-Stock,R., Diab-Assef,M., Rohrbeck,A., Foltzer-Jourdainne,C., Boltze,C., Hartig,R., Schonfeld,P., Roessner,A., and Gali-Muhtasib,H. (2005). 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J. Pharmacol. Exp. Ther. 312, 525-536. Shin,M., Bryant,J.D., Momb,J., and Appling,D.R. (2014). Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues. J. Biol. Chem. 289, 15507-15517. Song,Z., Zhou,Z., Chen,T., Hill,D., Kang,J., Barve,S., and McClain,C. (2003). S-adenosylmethionine (SAMe) protects against acute alcohol induced hepatotoxicity in mice. J. Nutr. Biochem. 14, 591-597. Tibbetts,A.S. and Appling,D.R. (2010). Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30, 57-81. Traka,M., Gasper,A.V., Smith,J.A., Hawkey,C.J., Bao,Y., and Mithen,R.F. (2005). Transcriptome analysis of human colon Caco-2 cells exposed to sulforaphane. J. Nutr. 135, 1865-1872. van Straten,E.M., Bloks,V.W., van Dijk,T.H., Baller,J.F., Huijkman,N.C., Kuipers,I., Verkade,H.J., and Plosch,T. (2012). Sex-dependent programming of glucose and fatty acid metabolism in mouse offspring by maternal protein restriction. Gend. Med. 9, 166-179. Warri,A., Saarinen,N.M., Makela,S., and Hilakivi-Clarke,L. (2008). The role of early life genistein exposures in modifying breast cancer risk. Br. J. Cancer 98, 1485-1493. West,M.G., Horne,D.W., and Appling,D.R. (1996). Metabolic role of cytoplasmic isozymes of 5,10-methylenetetrahydrofolate dehydrogenase in Saccharomyces cerevisiae. Biochemistry 35, 3122-3132. Whitehead,A.S., Gallagher,P., Mills,J.L., Kirke,P.N., Burke,H., Molloy,A.M., Weir,D.G., Shields,D.C., and Scott,J.M. (1995). A genetic defect in 5,10 methylenetetrahydrofolate reductase in neural tube defects. QJM. 88, 763-766. Yang,G., Lee,H.E., and Lee,J.Y. (2016). Erratum: A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. Sci. Rep. 6, 26218. Yang,X.M. and MacKenzie,R.E. (1993). NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is the mammalian homolog of the mitochondrial enzyme encoded by the yeast MIS1 gene. Biochemistry 32, 11118-11123. You,Y.A., Lee,J.H., Kwon,E.J., Yoo,J.Y., Kwon,W.S., Pang,M.G., and Kim,Y.J. (2015). Proteomic Analysis of One-carbon Metabolism-related Marker in Liver of Rat Offspring. Mol. Cell Proteomics. 14, 2901-2909. Zhang,Y., Kensler,T.W., Cho,C.G., Posner,G.H., and Talalay,P. (1994). Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl. Acad. Sci. U. S. A 91, 3147-3150. Ziegler,R.G., Hoover,R.N., Pike,M.C., Hildesheim,A., Nomura,A.M., West,D.W., Wu-Williams,A.H., Kolonel,L.N., Horn-Ross,P.L., Rosenthal,J.F., and Hyer,M.B. (1993). Migration patterns and breast cancer risk in Asian-American women. J. Natl. Cancer Inst. 85, 1819-1827. | 摘要: | 背景 食品中許多研究顯示來自植物的活性物質具有表觀遺傳上之影響。例如特定植化素在癌細胞及疾病動物模型上皆會抑制DNA轉甲基酶或組蛋白去乙醯酶,進而降低或減緩癌症發生機率。也有研究顯示如果母體攝取特定食品活性物質會透過造表觀遺傳調節造成影響子代發育。硫-腺核苷甲硫胺酸為體內的甲基提供者,為單碳代謝途徑中的關鍵代謝物。本研究室先前研究顯示特殊食品活性成分會改變體內硫-腺核苷甲硫胺酸的含量。然而食品中特殊食品活性成分對於與單碳代謝影響尚未被全面性深入探討。本論文同時以細胞及動物模式探討食品活性成分對於單碳代謝之影響。同時本研究進一步探討不同生命週期-包含懷孕期、哺乳期或離乳後給予特殊食品活性成分探討不同生命週期對於子代單碳代謝之不同影響。 實驗設計 在體內與體外以穩定同位素標定的方法探討食品活性物質對甲基代謝相關路徑分流的變化。細胞模式中以有表達甘氨酸甲基轉移酶及硫-腺核苷甲硫胺酸合成酶之肝細胞為模型,探討食品活性物質在體外模式中對單碳代謝之影響。動物模式主要分為母代暴露於懷孕期、哺乳期、或離乳後。懷孕期主要探討母代老鼠在交配後至生產前給予食品活性物質補充之飼料,哺乳期為母代老鼠生產後開始給予食品活性物質補充之飼料四周,離乳組為子代離乳後給予子代含食品活性物質補充之飼料,其餘生命期則是給予正常飼料。老鼠子代皆在八周齡犧牲並進行分析。 結果 在動物模型中,無論食品活性物質暴露於哺乳期、懷孕期、或離乳後皆影響使老鼠子代肝臟硫-腺核苷甲硫胺酸的含量。此外,在懷孕期及哺乳期動物模型中給予特定食品活性物質補充會促進非依賴葉酸依賴之轉甲基之路徑。 另一方面,本研究發現在懷孕期給予母代或是離乳後給予子代補充特定食品活性物質會促進子代肝臟膽鹼有利用,並提升粒線體中特定單碳代謝路徑,進而有利於肝臟硫-腺核苷甲硫胺酸生成;但是哺乳期補充則不會影響此路徑。本論文是第一個發現母體孕期補充此種食品活性物質有利於肝臟特定單碳代謝路徑及甲基利用分流的研究。 關鍵字: 植化素、硫-腺核苷甲硫胺酸、單碳代謝、跨代研究。 Background. Bioactive food components including certain phytochemicals can cause epigenetic modifications such as DNA methylation and histone modifications. By modifying the gene expression they can have preventive effects on diseases such as cancer in offspring. Numerous epidemiological and animal studies demonstrate that specific phytochemical can inhibit DNA methyltransferase and histone deacetylase activity in cancer cells. S-adenosylmethionine is a universal methyl donor that plays an important role in epigenetic modifications. The present study aims to investigate how selected phytochemicals modulate S-adenosyl- methionine homeostasis and one carbon metabolic kinetics in vitro and in vivo. Study design. Stable isotope labeling experiments were performed in cells as well as in mice to investigate the methyl group fluxes. The impacts of gestational, lactational or post-weaning exposure of specific bioactive component B and S on one carbon metabolism were investigated in the offspring. In the gestation group, pregnant C57BL/6 mice received the specific phytochemical supplemented diet from gestational day 0 to day 18. In the lactation group, female C57BL/6 mice received a control or compound S supplemented diet from postnatal day 1 to day 28. In the post-weaning group, male and female offspring received a control or selected phytochemical S supplemented diet for 4 weeks after weaning. Finally a separate group of offspring mice receiving supplementation throughout the maternal gestation, lactation, and 4-week post weaning periods. Results. In our stable isotopic tracer experiments in vivo models, enrichments in methionine (Met+3) and S-adenosylmethionine+3 (adoMet+3) from [Trimethyl-2H9]-choline chloride increased by 32% (p=0.015) and 33% (p=0.076) when mice were supplemented with S during gestation. In addition, the enrichments in adoMet+3 tended to increase (by 19%) during lactation (p=0.083). Gestational supplementation of S promotes the methyl group utilization from choline for methionine and adoMet synthesis. On the other hand, the enrichments in S-adenosylmethionine+1 (adoMet+1) increased by 78% (P=0.006) in the S-gestation group, tended to increase by 83% (p=0.178) in the S-weaning group. However, they did not change in the S-lactation group. Conclusions. In conclusion, gestational exposure to S greatly promote cytosolic and mitochondrial choline utilization whereas lactational supplementation of S only promotes cytosolic choline utilization. The Impacts of S supplementation on DNA synthesis and global DNA methylation during gestation, lactation, and post-natal period were also investigated. Key words: phytochemicals, S-adenosylmethionine (adoMet), one carbon metabolism. |
URI: | http://hdl.handle.net/11455/96071 | Rights: | 不同意授權瀏覽/列印電子全文服務 |
Appears in Collections: | 食品暨應用生物科技學系 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-106-7103043035-1.pdf | 2.65 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.