Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/96077
標題: | Excessive sugar consumption alters one-carbon metabolic kinetics 高糖飲食對於單碳代謝之影響 |
作者: | Tan Yee Ling 陳憶琳 |
關鍵字: | 甘氨酸甲基轉移酵素;葡萄糖;果糖;三羧酸循環;甘氨酸裂解系統;單碳代謝;Glycine N- methyltransferase;glucose;fructose;TCA cycle;glycine cleavage system;one- carbon kinetics | 引用: | Reference List Abdelmalek,M.F., Lazo,M., Horska,A., Bonekamp,S., Lipkin,E.W., Balasubramanyam,A., Bantle,J.P., Johnson,R.J., Diehl,A.M., and Clark,J.M. (2012a). Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 56, 952-960. Abdelmalek,M.F., Lazo,M., Horska,A., Bonekamp,S., Lipkin,E.W., Balasubramanyam,A., Bantle,J.P., Johnson,R.J., Diehl,A.M., and Clark,J.M. (2012b). Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 56, 952-960. Aller,E.E., Abete,I., Astrup,A., Martinez,J.A., and van Baak,M.A. (2011). Starches, sugars and obesity. Nutrients. 3, 341-369. Alwahsh,S.M. and Gebhardt,R. (2017). Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch. Toxicol. 91, 1545-1563. Avila,M.A., Berasain,C., Torres,L., Martin-Duce,A., Corrales,F.J., Yang,H., Prieto,J., Lu,S.C., Caballeria,J., Rodes,J., and Mato,J.M. (2000). Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J. Hepatol. 33, 907-914. Baxi,L., Warren,W., Collins,M.H., and Timor-Tritsch,I.E. (1990). Early detection of caudal regression syndrome with transvaginal scanning. Obstet. Gynecol. 75, 486-489. Bi,X., Lin,Q., Foo,T.W., Joshi,S., You,T., Shen,H.M., Ong,C.N., Cheah,P.Y., Eu,K.W., and Hew,C.L. (2006). Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol. Cell Proteomics. 5, 1119-1130. Bizeau,M.E. and Pagliassotti,M.J. (2005). Hepatic adaptations to sucrose and fructose. Metabolism 54, 1189-1201. Bray,G.A. (2013). Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv. Nutr. 4, 220-225. Byrne,C.D. and Targher,G. (2015). NAFLD: a multisystem disease. J. Hepatol. 62, S47-S64. Cardoso,A.S., Gonzaga,N.C., Medeiros,C.C., and Carvalho,D.F. (2013). Association of uric acid levels with components of metabolic syndrome and non-alcoholic fatty liver disease in overweight or obese children and adolescents. J. Pediatr. (Rio J. ) 89, 412-418. Cha,S.H., Wolfgang,M., Tokutake,Y., Chohnan,S., and Lane,M.D. (2008). Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc. Natl. Acad. Sci. U. S. A 105, 16871-16875. Charrez,B., Qiao,L., and Hebbard,L. (2015). The role of fructose in metabolism and cancer. Horm. Mol. Biol. Clin. Investig. 22, 79-89. Chen,S.Y., Lin,J.R., Darbha,R., Lin,P., Liu,T.Y., and Chen,Y.M. (2004). Glycine N-methyltransferase tumor susceptibility gene in the benzo(a)pyrene-detoxification pathway. Cancer Res. 64, 3617-3623. Chen,Y.M., Shiu,J.Y., Tzeng,S.J., Shih,L.S., Chen,Y.J., Lui,W.Y., and Chen,P.H. (1998). Characterization of glycine-N-methyltransferase-gene expression in human hepatocellular carcinoma. Int. J. Cancer 75, 787-793. Chiang,E.P., Wang,Y.C., Chen,W.W., and Tang,F.Y. (2009). Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J. Clin. Endocrinol. Metab 94, 1017-1025. Chiang,E.P., Wang,Y.C., and Tang,F.Y. (2007). Folate restriction and methylenetetrahydrofolate reductase 677T polymorphism decreases adoMet synthesis via folate-dependent remethylation in human-transformed lymphoblasts. Leukemia 21, 651-658. Cook,R.J. and Wagner,C. (1984). Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proc. Natl. Acad. Sci. U. S. A 81, 3631-3634. Dallongeville,J., Charbonnel,B., and Despres,J.P. (2011). [Sugar-sweetened beverages and cardiometabolic risk]. Presse Med. 40, 910-915. Debosch,B.J., Chen,Z., Saben,J.L., Finck,B.N., and Moley,K.H. (2014). Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis. J. Biol. Chem. 289, 10989-10998. Decombaz,J., Sartori,D., Arnaud,M.J., Thelin,A.L., Schurch,P., and Howald,H. (1985). Oxidation and metabolic effects of fructose or glucose ingested before exercise. Int. J. Sports Med. 6, 282-286. Dirlewanger,M., Schneiter,P., Jequier,E., and Tappy,L. (2000). Effects of fructose on hepatic glucose metabolism in humans. Am. J. Physiol Endocrinol. Metab 279, E907-E911. Ezzat,A., Brussoni,M., Schneeberg,A., and Jones,S.J. (2014). 'Do as we say, not as we do:' a cross-sectional survey of injuries in injury prevention professionals. Inj. Prev. 20, 172-176. Fleming,A. and Copp,A.J. (1998). Embryonic folate metabolism and mouse neural tube defects. Science 280, 2107-2109. Gaye,A., Burton,T.W., and Burton,P.R. (2015). ESPRESSO: taking into account assessment errors on outcome and exposures in power analysis for association studies. Bioinformatics. 31, 2691-2696. Go,M.K., Zhang,W.C., Lim,B., and Yew,W.S. (2014). Glycine decarboxylase is an unusual amino acid decarboxylase involved in tumorigenesis. Biochemistry 53, 947-956. Gross,D.N., Wan,M., and Birnbaum,M.J. (2009). The role of FOXO in the regulation of metabolism. Curr. Diab. Rep. 9, 208-214. Guezennec,C.Y., Satabin,P., Duforez,F., Merino,D., Peronnet,F., and Koziet,J. (1989). Oxidation of corn starch, glucose, and fructose ingested before exercise. Med. Sci. Sports Exerc. 21, 45-50. Hahn,R.A., MacDonald,B.R., Simpson,P.J., Wang,L., Towner,R.D., Ho,P.P., Goodwin,M., Breau,A.P., Suarez,T., and Mihelich,E.D. (1991). Characterization of LY233569 on 5-lipoxygenase and reperfusion injury of ischemic myocardium. J. Pharmacol. Exp. Ther. 256, 94-102. Herbig,K., Chiang,E.P., Lee,L.R., Hills,J., Shane,B., and Stover,P.J. (2002). Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J. Biol. Chem. 277, 38381-38389. Hirahatake,K.M., Meissen,J.K., Fiehn,O., and Adams,S.H. (2011). Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells. PLoS. One. 6, e26583. Hosios,A.M., Hecht,V.C., Danai,L.V., Johnson,M.O., Rathmell,J.C., Steinhauser,M.L., Manalis,S.R., and Vander Heiden,M.G. (2016). Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Dev. Cell 36, 540-549. Huang,Q., Yu,J., Zhang,X., Liu,S., and Ge,Y. (2016). Association of the serum uric acid level with liver histology in biopsy-proven non-alcoholic fatty liver disease. Biomed. Rep. 5, 188-192. Hum,J.M., O'Bryan,L., Smith,R.C., and White,K.E. (2017). Novel functions of circulating Klotho. Bone 100, 36-40. Ichinohe,A., Kure,S., Mikawa,S., Ueki,T., Kojima,K., Fujiwara,K., Iinuma,K., Matsubara,Y., and Sato,K. (2004). Glycine cleavage system in neurogenic regions. Eur. J. Neurosci. 19, 2365-2370. Jeffers,J.R. and Walter,W.L. (2012). Ceramic-on-ceramic bearings in hip arthroplasty: state of the art and the future. J. Bone Joint Surg. Br. 94, 735-745. Kim,D., Fiske,B.P., Birsoy,K., Freinkman,E., Kami,K., Possemato,R.L., Chudnovsky,Y., Pacold,M.E., Chen,W.W., Cantor,J.R., Shelton,L.M., Gui,D.Y., Kwon,M., Ramkissoon,S.H., Ligon,K.L., Kang,S.W., Snuderl,M., Vander Heiden,M.G., and Sabatini,D.M. (2015). SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363-367. Korieh,A. and Crouzoulon,G. (1991). Dietary regulation of fructose metabolism in the intestine and in the liver of the rat. Duration of the effects of a high fructose diet after the return to the standard diet. Arch. Int. Physiol Biochim. Biophys. 99, 455-460. Labuschagne,C.F., van den Broek,N.J., Mackay,G.M., Vousden,K.H., and Maddocks,O.D. (2014). Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7, 1248-1258. Lane,A.N., Yan,J., and Fan,T.W. (2015). 13C Tracer Studies of Metabolism in Mouse Tumor Xenografts. Bio Protoc. 5. Le,K.A. and Tappy,L. (2006). Metabolic effects of fructose. Curr. Opin. Clin. Nutr. Metab Care 9, 469-475. Liao,Y.J., Chen,K.H., Huang,S.F., Chen,T.L., Wang,C.K., Chien,C.H., Tsai,T.F., Liu,S.P., and Chen,Y.M. (2010). Deficiency of glycine N-methyltransferase results in deterioration of cellular defense to stress in mouse liver. Proteomics. Clin. Appl. 4, 394-406. Liao,Y.J., Lee,T.S., Twu,Y.C., Hsu,S.M., Yang,C.P., Wang,C.K., Liang,Y.C., and Chen,Y.A. (2016). Glycine N-methyltransferase deficiency in female mice impairs insulin signaling and promotes gluconeogenesis by modulating the PI3K/Akt pathway in the liver. J. Biomed. Sci. 23, 69. Liao,Y.J., Liu,S.P., Lee,C.M., Yen,C.H., Chuang,P.C., Chen,C.Y., Tsai,T.F., Huang,S.F., Lee,Y.H., and Chen,Y.M. (2009). Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: Implications of the gender disparity in liver cancer susceptibility. Int. J. Cancer 124, 816-826. Liu,H.H., Chen,K.H., Shih,Y.P., Lui,W.Y., Wong,F.H., and Chen,Y.M. (2003). Characterization of reduced expression of glycine N-methyltransferase in cancerous hepatic tissues using two newly developed monoclonal antibodies. J. Biomed. Sci. 10, 87-97. Liu,S.P., Li,Y.S., Chen,Y.J., Chiang,E.P., Li,A.F., Lee,Y.H., Tsai,T.F., Hsiao,M., Huang,S.F., and Chen,Y.M. (2007). Glycine N-methyltransferase-/- mice develop chronic hepatitis and glycogen storage disease in the liver. Hepatology 46, 1413-1425. Liu,S.P., Li,Y.S., Lee,C.M., Yen,C.H., Liao,Y.J., Huang,S.F., Chien,C.H., and Chen,Y.M. (2011). Higher susceptibility to aflatoxin B(1)-related hepatocellular carcinoma in glycine N-methyltransferase knockout mice. Int. J. Cancer 128, 511-523. Locasale,J.W., Grassian,A.R., Melman,T., Lyssiotis,C.A., Mattaini,K.R., Bass,A.J., Heffron,G., Metallo,C.M., Muranen,T., Sharfi,H., Sasaki,A.T., Anastasiou,D., Mullarky,E., Vokes,N.I., Sasaki,M., Beroukhim,R., Stephanopoulos,G., Ligon,A.H., Meyerson,M., Richardson,A.L., Chin,L., Wagner,G., Asara,J.M., Brugge,J.S., Cantley,L.C., and Vander Heiden,M.G. (2011). Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869-874. Lu,M., Wan,M., Leavens,K.F., Chu,Q., Monks,B.R., Fernandez,S., Ahima,R.S., Ueki,K., Kahn,C.R., and Birnbaum,M.J. (2012). Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat. Med. 18, 388-395. Lustig,R.H. (2010a). Fructose: metabolic, hedonic, and societal parallels with ethanol. J. Am. Diet. Assoc. 110, 1307-1321. Lustig,R.H. (2010b). Fructose: metabolic, hedonic, and societal parallels with ethanol. J. Am. Diet. Assoc. 110, 1307-1321. Marriott,B.P., Cole,N., and Lee,E. (2009a). National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139, 1228S-1235S. Marriott,B.P., Cole,N., and Lee,E. (2009b). National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139, 1228S-1235S. Mate,A., de la Hermosa,M.A., Barfull,A., Planas,J.M., and Vazquez,C.M. (2001). Characterization of D-fructose transport by rat kidney brush-border membrane vesicles: changes in hypertensive rats. Cell Mol. Life Sci. 58, 1961-1967. Mattaini,K.R., Sullivan,M.R., and Vander Heiden,M.G. (2016). The importance of serine metabolism in cancer. J. Cell Biol. 214, 249-257. Mayes,P.A. (1993). Intermediary metabolism of fructose. Am. J. Clin. Nutr. 58, 754S-765S. McMullen,M.H., Rowling,M.J., Ozias,M.K., and Schalinske,K.L. (2002). Activation and induction of glycine N-methyltransferase by retinoids are tissue- and gender-specific. Arch. Biochem. Biophys. 401, 73-80. McQuade,D.T., Plutschack,M.B., and Seeberger,P.H. (2013). Passive fructose transporters in disease: a molecular overview of their structural specificity. Org. Biomol. Chem. 11, 4909-4920. Meiser,J. and Vazquez,A. (2016). Give it or take it: the flux of one-carbon in cancer cells. FEBS J. 283, 3695-3704. Meissen,J.K., Hirahatake,K.M., Adams,S.H., and Fiehn,O. (2015). Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures. Metabolomics. 11, 707-721. Miller,B.F., Fattor,J.A., Jacobs,K.A., Horning,M.A., Navazio,F., Lindinger,M.I., and Brooks,G.A. (2002). Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J. Physiol 544, 963-975. Morrow,G.P., MacMillan,L., Lamarre,S.G., Young,S.K., MacFarlane,A.J., Brosnan,M.E., and Brosnan,J.T. (2015). In vivo kinetics of formate metabolism in folate-deficient and folate-replete rats. J. Biol. Chem. 290, 2244-2250. Nan,Y.M., Wang,R.Q., and Fu,N. (2014). Peroxisome proliferator-activated receptor alpha, a potential therapeutic target for alcoholic liver disease. World J. Gastroenterol. 20, 8055-8060. Narasimhan,A., Chinnaiyan,M., and Karundevi,B. (2015). Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat. Eur. J. Pharmacol. 761, 391-397. Newman,A.C. and Maddocks,O.D.K. (2017). One-carbon metabolism in cancer. Br. J. Cancer 116, 1499-1504. Nieman,K.M., Hartz,C.S., Szegedi,S.S., Garrow,T.A., Sparks,J.D., and Schalinske,K.L. (2006). Folate status modulates the induction of hepatic glycine N-methyltransferase and homocysteine metabolism in diabetic rats. Am. J. Physiol Endocrinol. Metab 291, E1235-E1242. Pai,Y.J., Leung,K.Y., Savery,D., Hutchin,T., Prunty,H., Heales,S., Brosnan,M.E., Brosnan,J.T., Copp,A.J., and Greene,N.D. (2015). Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nat. Commun. 6, 6388. Perry,R.J., Samuel,V.T., Petersen,K.F., and Shulman,G.I. (2014). The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84-91. Piedrahita,J.A., Oetama,B., Bennett,G.D., van,W.J., Kamen,B.A., Richardson,J., Lacey,S.W., Anderson,R.G., and Finnell,R.H. (1999). Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat. Genet. 23, 228-232. Port,A.M., Ruth,M.R., and Istfan,N.W. (2012). Fructose consumption and cancer: is there a connection? Curr. Opin. Endocrinol. Diabetes Obes. 19, 367-374. Possemato,R., Marks,K.M., Shaul,Y.D., Pacold,M.E., Kim,D., Birsoy,K., Sethumadhavan,S., Woo,H.K., Jang,H.G., Jha,A.K., Chen,W.W., Barrett,F.G., Stransky,N., Tsun,Z.Y., Cowley,G.S., Barretina,J., Kalaany,N.Y., Hsu,P.P., Ottina,K., Chan,A.M., Yuan,B., Garraway,L.A., Root,D.E., Mino-Kenudson,M., Brachtel,E.F., Driggers,E.M., and Sabatini,D.M. (2011). Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346-350. Rebollo,A., Roglans,N., Alegret,M., and Laguna,J.C. (2012). Way back for fructose and liver metabolism: bench side to molecular insights. World J. Gastroenterol. 18, 6552-6559. Rebollo,A., Roglans,N., Baena,M., Sanchez,R.M., Merlos,M., Alegret,M., and Laguna,J.C. (2014). Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells. Biochim. Biophys. Acta 1841, 514-524. Reeves,P.G., Nielsen,F.H., and Fahey,G.C., Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939-1951. Renner,S.S. and Meyer,K. (2001). Melastomeae come full circle: biogeographic reconstruction and molecular clock dating. Evolution 55, 1315-1324. Riby,J.E., Fujisawa,T., and Kretchmer,N. (1993). Fructose absorption. Am. J. Clin. Nutr. 58, 748S-753S. Ritze,Y., Bardos,G., D'Haese,J.G., Ernst,B., Thurnheer,M., Schultes,B., and Bischoff,S.C. (2014). Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. PLoS. One. 9, e101702. Roef,M.J., de,M.K., Kalhan,S.C., Straver,H., Berger,R., and Reijngoud,D.J. (2003). Gluconeogenesis in humans with induced hyperlactatemia during low-intensity exercise. Am. J. Physiol Endocrinol. Metab 284, E1162-E1171. Rose,M.L., Cattley,R.C., Dunn,C., Wong,V., Li,X., and Thurman,R.G. (1999a). Dietary glycine prevents the development of liver tumors caused by the peroxisome proliferator WY-14,643. Carcinogenesis 20, 2075-2081. Rose,M.L., Madren,J., Bunzendahl,H., and Thurman,R.G. (1999b). Dietary glycine inhibits the growth of B16 melanoma tumors in mice. Carcinogenesis 20, 793-798. Sah,D.W., Ray,J., and Gage,F.H. (1997). Regulation of voltage- and ligand-gated currents in rat hippocampal progenitor cells in vitro. J. Neurobiol. 32, 95-110. Sapp,V., Gaffney,L., EauClaire,S.F., and Matthews,R.P. (2014). Fructose leads to hepatic steatosis in zebrafish that is reversed by mechanistic target of rapamycin (mTOR) inhibition. Hepatology 60, 1581-1592. Schultz,A., Barbosa-da-Silva,S., Aguila,M.B., and Mandarim-de-Lacerda,C.A. (2015). Differences and similarities in hepatic lipogenesis, gluconeogenesis and oxidative imbalance in mice fed diets rich in fructose or sucrose. Food Funct. 6, 1684-1691. Scorletti,E., Calder,P.C., and Byrne,C.D. (2011). Non-alcoholic fatty liver disease and cardiovascular risk: metabolic aspects and novel treatments. Endocrine. 40, 332-343. Sloboda,D.M., Li,M., Patel,R., Clayton,Z.E., Yap,C., and Vickers,M.H. (2014a). Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. J. Obes. 2014, 203474. Sloboda,D.M., Li,M., Patel,R., Clayton,Z.E., Yap,C., and Vickers,M.H. (2014b). Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. J. Obes. 2014, 203474. Soleimani,M. (2011a). Dietary fructose, salt absorption and hypertension in metabolic syndrome: towards a new paradigm. Acta Physiol (Oxf) 201, 55-62. Soleimani,M. (2011b). Dietary fructose, salt absorption and hypertension in metabolic syndrome: towards a new paradigm. Acta Physiol (Oxf) 201, 55-62. Starace,M., Loi,C., Bruni,F., Alessandrini,A., Misciali,C., Patrizi,A., and Piraccini,B.M. (2017). Erosive pustular dermatosis of the scalp: Clinical, trichoscopic, and histopathologic features of 20 cases. J. Am. Acad. Dermatol. 76, 1109-1114. Sullivan,J.S., Le,M.T., Pan,Z., Rivard,C., Love-Osborne,K., Robbins,K., Johnson,R.J., Sokol,R.J., and Sundaram,S.S. (2015). Oral fructose absorption in obese children with non-alcoholic fatty liver disease. Pediatr. Obes. 10, 188-195. Sun,S.Z., Anderson,G.H., Flickinger,B.D., Williamson-Hughes,P.S., and Empie,M.W. (2011). Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. Food Chem. Toxicol. 49, 2875-2882. Sun,S.Z. and Empie,M.W. (2012). Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr. Metab (Lond) 9, 89. Teff,K.L., Elliott,S.S., Tschop,M., Kieffer,T.J., Rader,D., Heiman,M., Townsend,R.R., Keim,N.L., D'Alessio,D., and Havel,P.J. (2004). Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metab 89, 2963-2972. Tibbetts,A.S. and Appling,D.R. (2010). Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30, 57-81. Tipping,B., de,V.L., Candy,S., and Wainwright,H. (2006). Stroke caused by human immunodeficiency virus-associated intracranial large-vessel aneurysmal vasculopathy. Arch. Neurol. 63, 1640-1642. Toppe,C., Mollsten,A., Schon,S., and Dahlquist,G. (2017). Socio-economic factors influencing the development of end-stage renal disease in people with Type 1 diabetes - a longitudinal population study. Diabet. Med. 34, 676-682. Tseng,T.L., Shih,Y.P., Huang,Y.C., Wang,C.K., Chen,P.H., Chang,J.G., Yeh,K.T., Chen,Y.M., and Buetow,K.H. (2003). Genotypic and phenotypic characterization of a putative tumor susceptibility gene, GNMT, in liver cancer. Cancer Res. 63, 647-654. Underhill,M.L., Sheldon,L.K., Halpenny,B., and Berry,D.L. (2014). Communication about symptoms and quality of life issues in patients with cancer: provider perceptions. J. Cancer Educ. 29, 753-761. Varma,V., Boros,L.G., Nolen,G.T., Chang,C.W., Wabitsch,M., Beger,R.D., and Kaput,J. (2015). Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One-Carbon Cycle Energy Producing Pathway. Metabolites. 5, 364-385. Vila,L., Roglans,N., Perna,V., Sanchez,R.M., Vazquez-Carrera,M., Alegret,M., and Laguna,J.C. (2011). Liver AMP/ATP ratio and fructokinase expression are related to gender differences in AMPK activity and glucose intolerance in rats ingesting liquid fructose. J. Nutr. Biochem. 22, 741-751. Vos,M.B. and Lavine,J.E. (2013). Dietary fructose in nonalcoholic fatty liver disease. Hepatology 57, 2525-2531. Wang,W., Wu,Z., Dai,Z., Yang,Y., Wang,J., and Wu,G. (2013). Glycine metabolism in animals and humans: implications for nutrition and health. Amino. Acids 45, 463-477. WARBURG,O. (1956). On respiratory impairment in cancer cells. Science 124, 269-270. Whitehead,A.S., Gallagher,P., Mills,J.L., Kirke,P.N., Burke,H., Molloy,A.M., Weir,D.G., Shields,D.C., and Scott,J.M. (1995). A genetic defect in 5,10 methylenetetrahydrofolate reductase in neural tube defects. QJM. 88, 763-766. Wilder-Smith,C.H., Li,X., Ho,S.S., Leong,S.M., Wong,R.K., Koay,E.S., and Ferraris,R.P. (2014). Fructose transporters GLUT5 and GLUT2 expression in adult patients with fructose intolerance. United. European. Gastroenterol. J. 2, 14-21. Yki-Jarvinen,H. (2015). Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance. Nutrients. 7, 9127-9138. Zamierowski,M.M. and Wagner,C. (1977). Identification of folate binding proteins in rat liver. J. Biol. Chem. 252, 933-938. Zhang,W.C., Shyh-Chang,N., Yang,H., Rai,A., Umashankar,S., Ma,S., Soh,B.S., Sun,L.L., Tai,B.C., Nga,M.E., Bhakoo,K.K., Jayapal,S.R., Nichane,M., Yu,Q., Ahmed,D.A., Tan,C., Sing,W.P., Tam,J., Thirugananam,A., Noghabi,M.S., Pang,Y.H., Ang,H.S., Mitchell,W., Robson,P., Kaldis,P., Soo,R.A., Swarup,S., Lim,E.H., and Lim,B. (2012). Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259-272. | 摘要: | 背景 甘氨酸甲基轉移酵素 (glycine N- methyltransferase, GNMT) 是肝臟中主要酵素之一,此酵素主要的反應是將S-腺苷基甲流氨酸的甲基轉移到甘氨酸的氮原子上,產生肌氨酸以及S-腺核苷同半胱氨酸。因此GNMT可能透過影響哺乳動物細胞內DNA與蛋白質的甲基化修飾並影響基因的穩定及表現。高糖飲食提升人體許多疾病風險,包括糖尿病、心血管疾病、脂肪性肝炎等。高糖攝取對於癌症的代謝機制亦中扮演重要的角色。然而,GNMT在以葉酸為主的單碳代謝角色和高糖曝露對單碳代謝之角色尚未闡明清楚。本研究以細胞及動物的模式探討高糖暴露對於單碳代謝的影響以及其中GNMT所扮演之角色。 實驗設計在體內與體外方別以穩定同位素標定特定目標追蹤高糖攝取對體內或幫胞內重要代謝路徑之間分流的變化及動態平衡。以有無表達GNMT的細胞及動物模式分別在體內及體外模式中探討高葡萄糖及果糖攝取對於糖酵解、三羧酸循環、以及單碳路徑之間的分流影響,並進一步研究當中甘氨酸甲基轉移酵素所扮演的角色。 結果在GNMT缺失會影響細胞中的有氧糖解作用 (aerobic glycolysis),並影響葡萄糖及果糖在三羧酸循環代謝中的利用。GNMT缺失同時會進一步影響細胞內葡萄糖利用於絲氨酸合成 (de novo serine synthesis)。此外與有表達GNMT有細胞相比, GNMT缺失會造成甘氨酸裂解系統通量改變,此系統透過粒腺體甲酸的形成而合成單碳單元。表達GNMT則會影響果糖利用包括由糖酵解的三羧酸循環及單碳代謝通量,但並不影響果糖甘氨酸裂解系統或有氧糖解作用的代謝流。在動物模型中,無論有無表達GNMT之小鼠若攝取高果糖均會干擾來自粒腺體甘氨酸裂解系統所產生之嘆單元進入胸腺嘧啶生成。此外正常小鼠攝取高葡萄糖及高果糖會促進內生性甲酸用於嘌呤生合成,然而在GNMT剔除的小鼠模式中高葡萄糖及高果糖攝取會干擾內生性甲酸用於嘌呤的生成,實驗表明高糖攝取在有無表達GNMT的模型中會影響核苷酸的形成。 結論 本研究同時以細胞及動物模式探討高糖攝取對於單碳代謝的影響,並提出甘氨酸甲基轉移酵素再醣類及能量代謝之潛在角色。 關鍵字:甘氨酸甲基轉移酵素,葡萄糖,果糖,三羧酸循環,甘氨酸裂解系統,單碳代謝 Background. Glycine N- methyltransferase (GNMT, EC2.1.1.20) is an abundant liver protein that converts S- adenosylmethionine to S- adenosylhomocysteine while generating sarcosine from glycine. GNMT is a folate binding protein commonly diminished in human hepatoma. Sugar consumption is suspected to play an important role in the pathogenesis of diabetes, cardiovascular disorders, fatty liver disease, and some forms of cancers. Acute diabetic condition induced hepatic protein abundance and activity of glycine N-methyltransferase (GNMT) and phosphatidylethanolamine N- methyltransferase (PEMT), enzymes that have important roles in regulation of methyl groups and homocysteine. The present study aims to investigate how glucose and fructose modulate glycolysis, tricarboxylic acid (TCA) cycle and one carbon metabolic kinetics in vitro and in vivo. Study design. In cell models, hepatocyte- derived cell- lines with and without GNMT expression were cultured in regular minimum essential medium alpha medium (α MEM) treated with high glucose or fructose. In vivo mouse models: Study 1 was preformed to investigate the route of glucose and fructose on glycolysis, TCA cycle and one carbon metabolism in mice with and without GNMT. Study 2 was preformed to investigate the impacts of glucose and fructose on one- carbon kinetics. Results. In the cell model, defected GNMT results in wastage of sugar by increasing anaerobic glycolysis of glucose and fructose and impairs the utilization of both sugars for TCA cycle metabolite formation. Defected GNMT promotes the utilization of glucose (but not fructose) for de novo serine synthesis. Defected GNMT activates mitochondrial formate generation via glycine cleavage system (GCS) in vitro. GNMT assists fructose utilization for TCA cycle, 1C metabolism (but not GCS) and aerobic glycolysis metabolism. In the mouse model, we demonstrated that high fructose excessive consumption inhibited thymidine synthesis from mitochondrial formate production via GCS. However, high glucose and high fructose excessive consumption promoted 10- formylTHF-dependent purine synthesis in WT mice but inhibited 10- formylTHF-dependent purine synthesis in GNMT KO mice, suggesting that high sugar excessive consumption may affect nucleotide biosynthesis. Conclusion. This study investigated the effects of glucose and fructose on one-carbon metabolism in defected GNMT model between in vitro and in vivo. Key words Glycine N- methyltransferase, glucose, fructose, TCA cycle, glycine cleavage system, one- carbon kinetics |
URI: | http://hdl.handle.net/11455/96077 | Rights: | 不同意授權瀏覽/列印電子全文服務 |
Appears in Collections: | 食品暨應用生物科技學系 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-106-7103043122-1.pdf | 3.05 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.