Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96192
標題: 微生物誘導碳酸鈣沉澱應用於強化水泥砂漿之研究
Microbial-induced carbonate Precipitation for Strength Improvement in Mortar
作者: Yu-Xuan Hung
洪于軒
關鍵字: Bacillus pasteurii;微生物誘導碳酸鈣沉澱;水泥砂漿抗壓強度;Bacillus pasteurii;Microbial-induced carbonate precipitation;compressive strength of mortar
引用: 1.Chan, Y. W., and V. C. Li, 'Effect of Transition Zone ensification on Fiber/Cement Paste Bond Strength Improvement?,Advanced Cement Based Materials, Vol.5, 8-17,(1997). 2.Barnes, B. D., S. Diamond, and W. L. Dolch, 'The Contact Zone Between Portland Cement Paste and Glass ?Aggregate?Surfaces?Cement and Concrete Research, Vol.8, pp.233-244,(1978). 3.Zimbelmann, R., 'A Contribution to the Problem of Cement-Aggregate Bond?, Cement and Concrete Research, Vol.15,pp.801-808,(1985). 4.Bang, S. S., Galinat, J. K., and Ramakrishnan, V. (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microb. Technol. 28, 404-409. 5.Bachmeier, K. L., Williams, A. E., Warmington, J. R., and Bang, S. S. (2002) Urease activity in microbiologically-induced calcite precipitation. J. Biotech. 93, 171-181. 6.Day, J. L., Ramakrishnan, V., and Bang, S. S. (2003) Microbiologically induced sealant for concrete crack remediation. Proceedings of the 16th Engineering Mechanics Conference, Seattle, WA. 7.Willem De Muynck, Dieter Debrouwer, Nele De Belie, Willy Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials, Cement and Concrete Research 38 (2008) 1005–1014 8.DeJong, J. T., Fritzges, M. B., and Nüsslein, K. (2006) Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenv. Eng. 132, 1381-1392. 9.Qian Chunxiang, Wang Jianyun, Wang Ruixing, Cheng Liang, Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii, Materials Science and Engineering C 29 (2009) 1273–1280 10.G. Le Me´tayer-Levrel, S. Castanier, G. Orial, J.-F. Loubie`re, J.-P. Perthuisot, Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony, Sedimentary Geology 126 (1999) 25–34 11.Mitchell, J. K., and Santamarina, J. C. (2005). 'Biological considerations in geotechnical engineering.' ASCE Geotechnical Engineering Journal, 131(10), 1222-1233. 12.Tiano, P. (1995) Stone reinforcement by calcite crystals precipitation induced by organic mat rix macromolecules [J]. Studies in Conservation, 40 (3):171~176. 13.Ruixing, W. Chunxiang, Q. Jianyun, W. Study on Microbiological precipitation of CaCO3. 東南大學學報(自然科學版) 14.Nemati, M., Voordouw, G. (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically76 [J]. Enzyme Microb Technol, 33(5): 635–642. 15.Stocks-fischer, S., Galinat, J K., Bang, S. S. Microbiological precipitation of CaCO3 [J]. Soil Biol Biochem, 1999, 31(11): 1 563–1 571 16.Rodriguez, N. C., Rodriguez, G. M., Ben C. K., et al. (2003) Conservation of ornamental stone by myxococcus xanthium-induced carbonate biomineralization [J]. Appl Environ Microbiol, 69(4): 2 182–2 193. 17.Dick, J., De Windt, W., De Graef, B., et al. (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species [J]. Biodegradation, 17(4): 357–367. 18.Kitamura, M., Konno, H. (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions [J]. Journal of Crystal Growth, (236): 323-332. 19.Zeshan, H., Yulin, D. (2003) Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants [J]. Journal of Colloid and Interface Science, (266): 359-365. 20.Ramakrishnan, V., Ramesh, K. P., Bang. S. S. (2001) Bacterial Concrete [C]. Proceedings of SPIE, 4234, Smart Material s, Alan R. Wilson, Hiroshi Asanuma, Editors, 168~176. 21.Lirong Zhong, M.R. Islam. 一種新型微生物封堵裂縫的試驗研究. 國外油田工程. 22.Liang, C., Chun-Xiang, Q., Rui-Xing, W. and Jian-Yun, W. Study on the Mechanism of Calcium Carbonate Formation Inducedby Carbonate-mineralization Microbe. 東南大學學報(化學) 23.Whiffin, Victoria S. (2004) Microbial CaCO3 precipitation for the production of biocement. 24.Ruixing, W., Chunxiang, Q. Restoration of Defects on the Surface of Cement-Based Materials by Microbiologically precipitated CaCO3. 東南大學學報(矽酸鹽). 25.Hill, D. D. (2002) Sleep B. E. Effects of biofilm growth on flow and transport through a glass parallel plate f racture[J]. Journal of Contaminant Hydrology, 56, 227~246. 26.LI Pei-hao,QU Wen-jun. State of Art in Application of Bioremedying and Bioreinforceing Materials in Civil Engineering. Vol.26, No5. 材料科學與工程學報. 27.S.K. Ramachandran, V. Ramakrishnan, S.S. Bang ,Remediation of Concrete Using Micro-Organisms. ACI Mater J, 98 (2001), pp. 3–9 28.P. Ghosh,S. Mandal,BD Chattopadhyay,S. Pal, Use of microorganism to improve the strength of cement mortar, Cement and Concrete Research 35 (2005) 1980 – 1983. 29.Navneet Chahal , Rafat Siddique , Anita Rajor, Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete, Construction and Building Materials 28 (2012) 351–356 30.S. S. Bang , J. J. Lippert. Microbial calcite, a bio-based smart nanomaterial in concrete remediation, International Journal of Smart and Nano Materials Vol. 1, No. 1, March 2010, 28–39 31.Navneet Chahal, Anita Rajor, Calcium carbonate precipitation by different bacterial strains, African Journal of Biotechnology Vol. 10(42), pp. 8359-8372, 8 August, 2011
摘要: 
混凝土常利用添加卜作嵐材料的方式來改善其弱相界面,本研究則利用微生物誘導碳酸鈣沉澱的技術,以礦化作用的方式膠結材料來改善混凝土弱相界面。研究中使用Bacillus pasteurii菌種,取水灰比0.4、0.5及0.6,變化微生物濃度、添加鈣源與營養源差異及改變養護方式下,製作不同水泥砂漿立方試體,以試驗方式探討微生物誘導碳酸鈣沉澱對於水泥砂漿抗壓強度的影響。
研究結果顯示,水灰比越低的試驗組,以微生物誘導碳酸鈣沉澱強化抗壓強度越為有利,並在相同水灰比的條件下,微生物濃度較高的試驗組,有15%最大的抗壓強度增加;添加鈣源後增加水泥砂漿整體含鈣量,可使初齡期抗壓強度增加,但因拌合水中在早期會產生碳酸鈣粉粒,超過一定比例後會使抗壓強度下降;循環養護雖可增強微生物誘導碳酸鈣沉澱反應,但與標準養護相比,持續地保持水化反應與供應尿素源,對於強度發展更為有利;營養源中含有多醣體,添加過量至水泥砂漿中將會抑制水化作用進行,不利於早期強度發展。

The addition of Pozzolan material is a common way to improve concrete's weak interface between aggregate and cement. In this study, Microbial-induced carbonate precipitation technology is applied to cement materials and improve the weak interface of concrete. The tests of this study design the different water-cement ratio 0.4, 0.5, and 0.6, varying concentration of Bacillus pasteurii, calcium, and nutrient and changing the curing mode to make mortar cubes. Supposed to explore what the effect of Microbial-induced carbonate precipitation on the compressive strength of cement mortar.
The results show the lower the water-cement ratio, the better the effect of Microbial-induced carbonate precipitation on compressive strength. Under the same water-cement ratio, 15% maximal compressive strength increased in the higher microbial concentration tests. Adding calcium increases the amount of calcium in the mortar and further increases the compressive strength at early age, but the calcium carbonate particles at certain percentage in the mixed water will reduce the compressive strength. Compared with normal curing, cycle curing can enhance Microbial-induced carbonate precipitation. However, the normal one continuously maintaining the hydration reaction and supplying of urea is better for the development of the compressive strength. Nutrient contains polysaccharides, which will inhibit the hydration effect if added too much to the cement mortar. It is therefore not conducive to the development of compressive strength at early age.
URI: http://hdl.handle.net/11455/96192
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:土木工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7104062130-1.pdf4.39 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.