Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96221
標題: 水污泥與研磨製磚污泥產製輕質骨材之研究
Producing Lightweight Aggregates by Incorporating Tile Grinding Sludge with Reservoir Sediments
作者: Sheng-Nan Chang
張勝南
關鍵字: 輕質骨材;水庫污泥;研磨污泥;淨水污泥;正交陣列;田口方法;lightweight aggregate;reservoir sludge;grinding sludge;water purification sludge;orthogonal array;Taguchi methods
引用: 參考文獻(References) 1. Somayaji, S. Civil Engineering Materials; Prentice Hall: Upper Siddle River, NJ, USA, 2001. 2. Chandra, S.; Berntsson, L. Lightweight Aggregate Concrete; Noyes Publications: New York, NY, USA, 2002. 3. Metha, P.K.; Monteiro, P.J.M. Concrete. Microstructure, Properties and Materials, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006. 4. Ferone, C.; Colangelo, F.; Messina, F.; Iucolano, F.; Liguori, B.; Cioffi, R. Coal combustion wastes reuse in low energy artificial aggregates manufacturing. Materials 2013, 6, 5000–5015. [CrossRef] [PubMed] 5. Vasugi, V.; Ramamurthy, K. Identification of design parameters influencing manufacture and properties of cold—Bonded pond ash aggregate. Mater. Des. 2014, 54, 264–278. [CrossRef] 6. Gomathi, P.; Sivakumar, A. Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete. Constr. Build. Mater. 2015, 77, 276–287. [CrossRef] 7. Snellings, R.; Cizer, Ö.; Horckmans, L.; Durdzin´ski, P.T.; Dierckx, P.; Nielsen, P.; Vandewalle, L. Properties and pozzolanic reactivity of flash calcined dredging sediments. Appl. Clay Sci. 2016, 129, 35–39. [CrossRef] 8. Nor, A.M.; Yahya, Z.; Abdullah, M.M.A.B.; Razak, R.A.; Ekaputri, J.J.; Faris, M.A.; Hamzah, H.N. A Review on the Manufacturing of Lightweight Aggregates Using Industrial By-Product. MATEC Web Conf. 2016, 78, 01067. [CrossRef] 9. Hsu, W.C. Recycling and Separation of Waste Porcelain Tile Sludge and Solar Wafer Slicing Oil. Master's Thesis, National United University, Miaoli, Taiwan, February 2010. 10. Wainwright, P.J.; Cresswell, D.J.F. Synthetic aggregate from combustion ashes using an innovative rotary kiln. Waste Manag. 2001, 21, 241–246. [CrossRef] 11. Ducman, V.; Mladenovicˇ, A.; Šuput, J.S. Lightweight aggregate based on waste glass and its alkali–silica reactivity. Cem. Concr. Res. 2002, 32, 223–226. [CrossRef] 12. Cheeseman, C.R.; Makinde, A.; Bethanis, S. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash. Resour. Conserv. Recycl. 2005, 43, 147–162. [CrossRef] 13. Cheeseman, C.R.; Virdi, G.S. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resour. Conserv. Recycl. 2005, 45, 18–30. [CrossRef] 14 Chiou, I.J.; Wang, K.S.; Chen, C.H.; Lin, Y.T. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Manag. 2006, 26, 1453–1461. [CrossRef] [PubMed] 15. Mun, K.J. Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Constr. Build. Mater. 2007, 21, 1583–1588. [CrossRef] 16. Kayali, O. Fly ash lightweight aggregates in high performance concrete. Constr. Build. Mater. 2008, 22, 2393–2399. [CrossRef] 17. Qiao, X.C.; Ng, B.R.; Tyrer, M.; Poon, C.S. Production of lightweight concrete using incinerator bottom ash. Constr. Build. Mater. 2008, 22, 473–480. [CrossRef] 18. Muellera, A.; Sokolova, S.N.; Vereshagin, V.I. Characteristics of lightweight aggregates from primary and recycled raw materials. Constr. Build. Mater. 2008, 22, 703–712. [CrossRef] 19. Chen, H.J.; Wang, S.Y.; Tang, C.W. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Constr. Build. Mater. 2010, 24, 46–55. [CrossRef] 20. Kourti, I.; Cheeseman, C.R. Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass. Resour. Conserv. Recycl. 2010, 54, 769–775. [CrossRef] 21. Tang, C.W.; Chen, H.J.; Wang, S.Y.; Spaulding, J. Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry. Cem. Concr. Compos. 2011, 33, 292–300. [CrossRef] 22. Chen, H.J.; Yang, M.D.; Tang, C.W.; Wang, S.Y. Producing synthetic lightweight aggregates from reservoir sediments. Constr. Build. Mater. 2012, 28, 387–394. [CrossRef] 23. Bajare, D.; Korjakins, A.; Kazjonovs, J.; Rozenstrauha, I. Pore structure of lightweight clay aggregate incorporate with non-metallic products coming from aluminum scrap recycling industry. J. Eur. Ceram. Soc. 2012, 32, 141–148. [CrossRef] 24. Huang, C.H.; Wang, S.Y. Application of water treatment sludge in the manufacturing of lightweight aggregate. Constr. Build. Mater. 2013, 43, 174–183. [CrossRef] 25. Liao, Y.C.; Huang, C.Y.; Chen, Y.M. Lightweight aggregates from water reservoir sediment with added sodium hydroxide. Constr. Build. Mater. 2013, 46, 79–85. [CrossRef] 26. Shon, C.S.; Jung, Y.S.; Saylak, D.; Mishra, S.K. Development of synthetic aggregate using off-ASTM specification ashes. Constr. Build. Mater. 2013, 38, 700–707. [CrossRef] 27. Yaghi, N.; Hartikainen, H. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings. Chemosphere 2013, 93, 1879–1886. [CrossRef] [PubMed] 28. Donatello, S.; Cheeseman, C.R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Manag. 2013, 33, 2328–2340. [CrossRef] [PubMed] 29. Bernhardt, M.; Tellesbø, H.; Justnes, H.; Wiik, K. Mechanical properties of lightweight aggregates. J. Eur. Ceram. Soc. 2013, 33, 2731–2743. [CrossRef] 30. Chung, S.Y.; Han, T.S.; Yun, T.S.; Youm, K.S. Evaluation of the anisotropy of the void distribution and the stiffness of lightweight aggregates using CT imaging. Constr. Build. Mater. 2013, 48, 998–1008. [CrossRef] 31. Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. A review on the use of agriculture waste material as lightweight aggregate for reinforced concrete structural members. Adv. Mater. Sci. Eng. 2014, 2014, 365197. [CrossRef] 32. Tang, C.W. Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments. Comput. Concr. 2014, 13, 325–342. [CrossRef] 33. Santhiya, A.; Sakthieswaran, N.; Brintha, G.S.; Babu, O.G. A review of experimental investigation on coconut shell as replacement on concrete as course aggregate in their strength. Int. J. Res. Appl. Sci. Eng. Technol. 2016, 4, 765–767. 34. Chen, H.J.; Hsueh, Y.C.; Peng, Y.C.; Tang, C.W. Paper Sludge Reuse in Lightweight Aggregates Manufacturing. Materials 2016, 9, 876. [CrossRef] [PubMed] 35. Liu, R.; Coffman, R. Lightweight aggregate made from dredged material in green roof construction for stormwater management. Materials 2016, 9, 611. [CrossRef] [PubMed] 36. Suchorab, Z.; Barnat-Hunek, D.; Franus, M.; Łagód, G. Mechanical and physical properties of hydrophobized lightweight aggregate concrete with sewage sludge. Materials 2016, 9, 317. [CrossRef] [PubMed] 37. Farías, R.D.; García, C.M.; Palomino, T.C.; Arellano, M.M. Effects of wastes from the brewing industry in lightweight aggregates manufactured with clay for green roofs. Materials 2017, 10, 527. [CrossRef] [PubMed] 38. Colangelo, F.; Messina, F.; Palma, L.D.; Cioffi, R. Recycling of non-metallic automotive shredder residues and coal fly-ash in cold-bonded aggregates for sustainable concrete. Compos. Part B Eng. 2017, 116, 46–52. [CrossRef] 39. Colangelo, F.; Cioffi, R.; Liguori, B.; Iucolano, F. Recycled polyolefins waste as aggregates for lightweight concrete. Compos. Part B Eng. 2016, 106, 234–241. [CrossRef] 40. Colangelo, F.; Cioffi, R. Use of Cement Kiln Dust, Blast Furnace Slag and Marble Sludge in the Manufacture of Sustainable Artificial Aggregates by Means of Cold Bonding Pelletization. Materials 2013, 6, 3139–3159. [CrossRef] [PubMed] 41. Colangelo, F.; Messina, F.; Cioffi, R. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. J. Hazard. Mater. 2015, 15, 181–191. [CrossRef] [PubMed] 42. Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization: Tokyo, Japan, 1987. 43. Roy, R.K. A Primer on the Taguchi Method; Van Nostrand Reinhold: New York, NY, USA, 1990. 44. Roy, R.K. Design of Experiments Using the Taguchi Approach; John Wiley & Sons Inc.: New York, NY, USA, 2001. 45. Taguchi, G.; Chowdhury, S.; Wu, Y. Taguchi's Quality Engineering Handbook; John Wiley & Sons Inc.: New York, NY, USA, 2005. 46.顏聰、陳豪吉等,「水庫淤泥輕質骨材之產製及輕質骨材混凝土之產業化應用」,國家科學委員會,產學合作研究期中成果報告,2005。 47.蕭博仰,「水庫淤泥輕質骨材之膨脹氣體生成研」,碩士論文,國立中興大學土木工程系,2006。 48. M.A. Mannan, C. Ganapathy, Concrete from an agricultural waste-oil palm shell (OPS), Building and Environment, No.39, pp.441-448, 2004. 49.王順元,「廢棄物資源化再製輕質骨材之應用研究」,博士論文,國立中興大學土木工程系,2010。 50.龔洛書、柳春圃等編著,「輕集料混凝土」,中國鐵道出版社 (中國),1996。 51. Chandra, S. and Berntsson, L. ,Lightweight Aggregate Concrete, Noyes Publications, New York, USA, 2002. 52. Hoff, G.C., 'Guide for the Use of Low-Density Concrete in Civil Works Projects', ERDC/SL TR-00-3, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2002. 53. Holm, T.A. and Bremner, T.W., State-of-the-Art Report on High-Strength High-Durability Structural Low-Density Concrete for Applications in Severe Marine Environments, ERDC/SL TR-02-13, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2002. 54. FIP Manual of Lightweight Aggregate Concrete, 2nd ed., Surry University Press, Glasgow and London, 1983. 55. Bremner, T.W., Holm, T.A. and Stepanova, V.F., Lightweight concrete-a proven material for two millennia, Proceedings of Advances in Cement and Concrete. University of New Hampshire, Durham. Sarkar, S. L. and Grutzeck, M.W. ed., pp. 37-41, 1994. 56.資料來源,http://www.haydite.com/. 57.葉春爐、丁建彤,「輕質骨材及其混凝土產業發展概況」,輕質骨材混凝土會刊,創刊號,第76-83頁,2004。 58.資料來源「日本人工輕量骨材協會」,http://suites.is-assoc.co.jp/~ala/。 59.顏聰,「輕質混凝土之工學性質及工程特性」,混凝土工程技術研習會,台灣營建研究中心,1985。 60.高健章、張阿本,「頁岩燒製輕骨材之工程性質研究」,營建知訊,第120期,第30-49頁,1992。 61.許桂銘、黃兆龍,「飛灰輕質骨材性質及其在混凝土上之應用」,營建工程技術,第十三期,第267-295頁,1990。 62.顏聰、曾元一,「人造骨材輕質混凝土之製造及工業化研究」,台灣研究中心研究報告,1993。 63.王櫻茂、顏聰,「人造輕質骨材燒製及其物理化學性質之試驗研究」,營建知訊,第120期,第5-16頁,1992年。 64.許國乾、陳烈芳、劭濟華、舒培璋、李培基等,「陶粒」,建築工程出版社,第一版,1964。 65.范錦忠,「萊卡(陶粒) 生產工藝和設備」,新世紀首屆全國輕骨料及其製品技術和應用研討會論文集,第230-235頁,2001年。 66.閻振甲、何豔君,「陶粒生產實用技術」,化學工業出版社,第一版,2006。 67.中國建築科學研究院混凝土研究所編譯,「國外輕骨料混凝土應用」,中國建築工業出版社,第一版,1982。 68.資料來源「河南紅星礦業製造廠」,http://www.kuangshanjixie.com.cn/product/xuankuang/200686153659.htm. 69.王順元、蔡文博、劉得弘,「國內外輕質骨材混凝土之應用與介紹」,水利土木科技資訊季刊,中興工程科技研究發展基金會,第45期,2009年。 70.資料來源「行憲監察院實錄第八編-91年糾正案索引總表」,http://www.cy.gov.tw/record/3-3-4_1.html 71. J.A. Rossignolo, M.V.C. Agnesini, J.a. Morais, 'Properties of high-performance LWAC for precast structures with Brazilian lightweight aggregates,' Cement and Concrete Research, Vol. 33, pp. 363-371(2003). 72.許盈松,「水庫淤砂再生資源技術研究」,水庫淤積浚渫工程研討會論文集,第107-128頁,民國2002年。 73.顏聰、黃兆龍、陳豪吉等,「水庫淤泥輕質骨材產製及輕質骨材混凝土應用與推廣」,內政部研究計畫成果報告,內政部營建所,2003年。 74. Riley, C.M., 'Relation of chemical properties to the bloating of clays', ACI Journal, Vol.34, No.4, pp.121-128, 1951. 75.陳豪吉、顏聰、王順元等,「以燃煤電廠底灰燒製輕質骨材之研究」,台電工程月刊, Vol.702, pp.37-49,02 2007. 76.How-Ji Chen, Shun-Yuan Wang and Chao-Wei Tang, 'Reuse of Incineration Fly Ashes and Reaction Ashes for Manufacturing Lightweight Aggregate,' Construction and Building Materials, no.24,pp.46.55, 01 2010.(EI`'SCI) 77.王順元、陳豪吉、顏聰、黃中和、林正隆、洪世政、吳美惠,「淨水污泥產製輕質骨材之可行性研究」,自來水會刊, Vol.30, no.4, pp.37-51, 2011. 78.陳豪吉、洪世政、蔡文博、王順元、林正隆,「自來水淨水污泥輕質粒料產製技術研究」,土木水利會刊, Vol.41, no.6, pp.35-44, 2014. 79.資料來源「創用CC姓名標示-相同方式分享3.0」http://commons.wikimedia.org/w/index.php?curid=10279769. 80.資料來源:臺灣省自來水公司第三區管理處-淨水場自來水處理流程說明http://www3.water.gov.tw/ContentView.aspx?id=83 81.林東燦,「污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究」,碩士論文,國立中央大學環境工程研究所,2006。 82.林忠逸,「水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究」,碩士論文,國立中央大學環境工程研究所,2004。 83.顏笠安,「淨水場混凝污泥質量特性與脫水泥餅再利用初步評估」,碩士論文,國立中央大學環境工程研究所,2009。 84.黃中和、陳豪吉,「以石材廢泥添加淨水污泥燒製輕質骨材之研究」,中華輕質骨材協會會刊,第七期,第15-25頁,2010。 85.周彩樓、尚琦、尹洪江,「淨水場沉澱池淤泥超輕陶粒的研究」,熱固性樹脂(中國),第4期,第83-86頁,1999。 86.朱彬、王海亮、陸在宏,「給水廠脫水污泥燒結陶粒試驗」,給水排水(中國),第31卷,第2期,第35-36頁,2005。 87.賀君、王啟山、任愛玲,「給水廠及污水廠污泥製陶粒技術研究」,環境工程學報(中國),第3卷,第9期,第1653-1657頁,2009。 88.賀君、王啟山、任愛玲,「給水廠污泥製高強陶粒技術研究」,工業安全與環保(中國),第36卷,第11期,第51-52頁,2010。 89.謝宗良,「廢水再利用及淨水污泥資源化技術參訪」,財團法人台灣環境管理協會出國考察報告,2011,P5~P32。 90.王吉照、王奕軒「日本工業污泥再利用及相關處理業務觀摩」,財團法人台灣環境管理協會出國考察報告,2010,P4~P21。 91.郭隆,「污泥資源化與再利用」,經濟部工業局網站,2010。 92.周珊珊,「污泥減量新技術介紹」,台灣科學工業園區科學工業同業公會,2013。 93.張添晉、陳俞穎,「有機污泥之生物減量技術」,財團法人台灣環境管理協會網站。 94.經濟部工業局,「廢水污泥減量手冊」,經濟部工業局網站,2005。 95.林正祥,「污泥減容減量技術實例探討」,經濟部工業局網站,2004。 96.曹華,「污泥製造陶粒清生產工藝初探」,第十二屆全國輕骨材及輕骨材混凝土學術討論會論文,2016。 97.支楠、李惠嫻,「淤泥陶粒生產工藝設計中的幾點體會」,第十二屆全國輕骨材及輕骨材混凝土學術討論會論文,2016。 98.詹志潔,「田口方法基礎課程講義」,私立逢甲大學,2017。 99.CNS 11776. Method of Test for Particle-Size Analysis of Soils; Bureau of Standards, Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 1987. 100. ASTM D854-06e1. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer; ASTM International: West Conshohocken, PA, USA, 2006. 101. CNS 5090. Method of Test for Specific Gravity of Soils; Bureau of Standards, Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 1988. 102.CNS 10896. Method of Test for Fly Ash or Natural Pozzolans for Use as Mineral Admixture in Portland Cement Concrete; Bureau of Standards, Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 1984. 103. CNS 488. Method of Test for Specific Gravity and Absorption of Coarse Aggregate; Bureau of Standards, Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 1993. 104. Phadke, M.S. Quality Engineering Using Robust Design; Prentice Hall: Upper Saddle River, NJ, USA, 1989. 105. Wahid, Z.; Nadir, N. Improvement of one factor at a time through design of experiments. World Appl. Sci. J. 2013, 21, 56–61. 106. Neville, A.M. Properties of Concrete; Longman: Harlow, UK, 1994. 107. Riley, C.M. Relation of chemical properties to the bloating of clays. J. Am. Ceram. Soc. 1951, 30, 121–128. [CrossRef] 108. ASTM C330/C330M-17a. Standard Specification for Lightweight Aggregates for Structural Concrete; ASTM International: West Conshohocken, PA, USA, 2017. 109. GB/T 2842. China National Standard; Test Method for Lightweight Aggregates; China Building Material Federation: Beijing, China, 1981.
摘要: 
本研究主要探討水庫淤泥及自來水淨水場產生之淨水污泥與研磨製磚污泥製造成輕質骨材的可行性。研究上利用台灣島內水庫淤泥及淨水場的淨水污泥,先檢測其物理性質並分析其化學成分,之後結合研磨製磚污泥進行實驗室內之輕質骨材燒製試驗。燒製成功的輕質骨材,即檢驗其物理與工程性質。
研究結果顯示,淨水污泥在豐水期時之污泥粒徑皆大於枯水期,這是因為豐水期進廠之原水濁度較高,故有較大之顆粒粒徑,最大中值粒徑達0.014mm,但仍符合作為輕質骨材之原料需求。污泥之比重約介於2.63~2.73間,而且皆為粉土或粘土質的沉積物,適合作為製造輕質骨材的原料。故淨水污泥的化學成分落點皆在文獻建議之適當範圍內應可製成輕質骨材。
本研究另外亦應用田口優化方法,將研磨製磚污泥粉末結合水庫淤泥製造輕質骨材。本研究採用正交陣列,包括五項可控制四層級因素(即污泥含量、預熱溫度、預熱時間、燒結溫度及燒結時間)。以變異數分析方法探討實驗因素對製成輕質骨材的顆粒密度、吸水率、膨脹率及燒失量的影響。整體而言,製成骨材的顆粒密度介於0.43 至2.1 g/cm3而吸水率介於0.6%至13.4%之間。這些數值與一般及高性能輕質骨材的需求相若。本研究的結果顯示,將研磨製磚污泥結合水庫淤泥以製造高性能輕質骨材是相對可行的。

The main purpose of this study is to examine the feasibility of making lightweight aggregates (LWAs) with reservoir sediments or sludge, water purification (WP) sludge generated in water purification facilities (WPFs) and grinding sludge from brick making. Sludge was collected from reservoirs and WPFs in Taiwan for physical properties testing and chemical composition analysis. Then, the two types of sludge were included together with grinding sludge for firing tests in the lab for making of LWAs. The finished LWAs were tested for their physical and engineering properties.
Results show that WP sludge meets the requirements as a raw material of LWAs despite having larger particle diameters with a maximum up to 0.014 mm in wet periods due to higher raw water turbidity compared to dry periods. With a specific gravity in the range of 2.63 to 2.73 and in the form of silt or clay sediments, it is a suitable raw material for making of LWAs. With its chemical contents all falling within the appropriate ranges recommended by literature, it should be able to form LWAs.
Taguchi methods were also applied to combine grinding sludge from brick making with reservoir sediments for making of LWAs. For this, an orthogonal array was employed, which included five controllable four-level factors (i.e. sludge content, preheating temperature and time, sintering temperature and time). Analysis of variance was performed to investigate how these experimental factors affected the finished LAWs in terms of particle density, water absorption, expansion ratio and loss on ignition. Overall, the finished LAWs have particle density in the range of 0.43 to 2.1 g/cm3 and water absorption in the range of 0.6 to 13.4%. These values are comparable with requirements for general and high performance LAWs. These results indicate that it is relatively feasible to make high performance LWAs with the combination of grinding sludge from brick making and reservoir sediments.
URI: http://hdl.handle.net/11455/96221
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-05起公開。
Appears in Collections:土木工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8101062002-1.pdf3.85 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.