Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96228
標題: 火害後纖維輕質骨材混凝土殘留力學性質研究
Residual Mechanical Properties of Fiber Lightweight Aggregate Concrete after Fire Damage
作者: Chun-Wei Lee
李俊葦
關鍵字: 纖維輕質骨材混凝土;殘餘力學性質;殘餘握裹強度;fiber lightweight aggregate concrete;residual mechanical properties;residual bond strength
引用: 參考文獻 1. Mindess, S., Young, J.F., and Darwin D., Concrete, Prentice Hall (2003). 2. Somayaji, S., Civil engineering materials, Prentice Hall, Upper Siddle River, New Jersey (2001). 3. 湯兆緯、陳冠宏、張朝順編譯,『土木材料』,高立圖書公司,民國91年9月出版。 4. Metha, P.K. and Monteiro, P.J.M., Concrete; Microstructure, Properties and Materials, 3rd Edition, McGraw-Hill, New York (2006). 6. Song, P.S. and Hwang, S., 'Mechanical Properties of High-Strength Steel Fiber –Reinforced Concrete', Constr. Build. Mat., Vol. 18, pp. 669-673 (2004). 7. Maeder, U., Lallemant-Gamboa I., Chaignon, J., Lombard, J.P., Ceracem, a new high performance concrete: characterizations and applications. In: Fehling, E., Schmidt, M., Stűrwald, S., co-editors, Proceeding of first international symposium on ultra high performance concrete, Kassel University, Germany, pp. 59–68 (2004). 8. 林俊賢,「纖維混凝土拉拔行為之界面應力分析」,國立成功大學土木工程研究所碩士論文(2000)。 9. 洪志武,「纖維直徑分佈對混凝土強度之影響」,國立成功大學土木工程研究所碩士論文(2002)。 10. 湯家智,「鋼纖維添加量對高強度混凝土工程性質之影響」,黃埔學報,第五十六期,第59-70頁(2008)。 11. Schneider, U., Concrete at High Temperatures – A General Review, in Fire Safety73Journal, Elsevier, Vo.13, No.1, pp.55-68 (1988). 12. Eurocode 2: Design of concrete structures. prEN 1992-1-2 part 1.2: General rules–Structural fire design, European Committee for Standardization, Brussels (2002). 13. 湯兆緯、顏聰,「鋼結構輕質混凝土結構之隔熱節能評估」,輕質骨材與輕質骨材混凝土應用研討會論文集,第117-135 頁,民國92 年4 月18 日。 14. 黃兆龍、洪盟峰、潘誠平、陳宗鵠、黃博全,「淤泥輕質骨材鋼筋混凝土之經濟效益分析」,輕質骨材與輕質骨材混凝土應用研討會論文集,第27-39 頁,民國92 年4 月18 日。 15. 顏聰、黃玉麟、湯兆緯,「鋼結構輕質骨材混凝土建築之經濟性評估」,內政部建築研究所專題研究計畫報告,民國91 年12 月。 16. 湯兆緯,「輕質骨材混凝土構造之經濟性評估」,水庫淤泥輕質骨材混凝土研討會論文集,第G1-G33 頁,民國92 年6 月19 日。 17. T.A.Holm,'lightweight concrete and aggregates,'Standard Technical Publication196C(1994). 18. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI318-11) and Commentary, American Concrete Institute, Farmington Hills (2011). 19. 過鎮海、时旭東,「鋼筋混凝土原理和分析」,第146-162 頁(2003)。 20. Robins, P.J., and Austin, S.A., 'Bond of Lightweight Aggregate ConcreteIncorporating Condensed Silica Fume, Fly Ash, Silica Fume, slag and NaturalPozzolans', ACI, Detroit, pp. 941-958 (1986). 21. Mor, A. ,Steel-Concrete Bond in High-Strength Lightweight Concrete', ACIMaterials Journal, pp. 76-82 (1992). 22. Mor, A., 'Fatigue Behavior of High-Strength Concrete under Marine Conditions',PhD thesis, University of California at Berkely (1987). 23. Karl, W., 'Stahlleichtbeton', Bauverlag GMBH, Wiesbaden und Berlin, pp. 126-147(1972). 24. 黃中和,「輕質骨材混凝土樑耐震行為之研究」,國立中興大學博士論文,pp.71-100 (2005)。 25. 何政、歐晉萍,「鋼筋與混凝土結構非線性分析」,第37-68 頁(2007)。 26. CEB, CEB-FIP Model Code 1990 (Concrete Structures), Comité Euro-Internationaldu Béton, Lausanne, Switzerland (1993). 27. Arel, H.Ş., Yazıcı, Ş., 'Concrete–reinforcement bond in different concrete classes', Construction and Building Materials, Vol. 36, pp. 78–83 (2012). 28. Walton, P.L. and Majumdar, A.J., 'Cement-based composites with mixtures of different types of fiber', Composites, 209–216 (1975). 29. Bentur, A. and Mindess, S., Fiber Reinforced Cementitious Composites, Elsevier Applied Science, London (1990). 30. Xu, G., Magnani, S., and Hannant, D.J., 'Durability of hybrid polypropylene–glass fiber cement corrugated sheets', Cement and Concrete Composites, 20 (1), 79–84 (1998). 31. Banthia, N. and Sappakittipakorn, M., Toughness enhancement in steel fiber reinforced concrete through fiber hybridization', Cement and Concrete Research, 37,1366–1372 (2007). 32. 財團法人台灣營建研究中心,「纖維混凝土之發展與應用」,財團法人台灣營建研究中心研究報告(1983)。 33. Bilodeau, A., Kodur, V.K.R., and Hoff, G.C., 'Optimization of the type and amountof polypropylene fibres for preventing the spalling of lightweight concrete subjectedto hydrocarbon fire', Cement & Concrete Composites, Vol. 26, pp. 163-174 (2004). 34. Hammer, T.A., High strength concrete, Phase 3, SP6 fire resistance-report 6.2, Spalling reduction through material design. SINTEF report STF70 F92156, Trondheim, Norway (1992). 35. Nishida, A. and Yamazaki, N., 'Study on the properties of high strength concrete with short polypropylene fiber for spalling resistance', In: Proceedings of International Conference on Concrete Under Severe Conditions , CONSEC'95, Sapporo, Japan, pp. 1141–1150 (1995). 36. , Y.N., Peng, G.F., and Anson, M., 'Residual and pore structure of high-strength oncrete and normal strength concrete after exposure to high temperature', Cement nd Concrete Composites 21 (1), pp. 23–27 (1999). 37. Atkinson, T., 'Polypropylene fibers control explosive spalling in high performance oncrete', Concrete 38 (10), pp. 69–70 (2004). 38. Kalifa, P., Chene, G., and Galle, C., 'High-temperature behavior of HPC with olypropylene fibres – from spalling to microstructure', Cement and Concrete esearch 31 (10), pp. 1487–1499 (2001). 39. 王平,方曉,陳瑞生,「聚丙烯纖維在混凝土高溫後抗壓抗折中不同表現的分析」,浙江工業大學學報,第32 卷第3 期,第333 頁~337 頁(2004) 40. Poon, C.S., Shui, Z.H. and Lam, L., 'Compressive behavior of fiber reinforced highperformance oncrete subjected to elevated temperatures', Cement and Concrete esearch, 34: 2215–2222 (2004). 41. Chan, Y.N., Luo, X., and Sun, W., 'Compressive strength and pore structure of high performance concrete after exposure to high temperature up to 800℃', Cem. Concr.Res., 30, pp. 247–251 (2000). 42. 王天志,「加聚丙烯纖維之高性能混凝土在高溫後之強度恢復」,國立交通大學土木工程學系碩士班碩士論文(1997)。 43. 內政部營建署,「建築材料與建築設備之分類系統」,財團法人台灣營建研究中心報告,1982年。 44. Chan, S.Y.N., Luob, X., andSunb, W., 'Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete,' Construction and Building Materials, No. (14), pp. 261-266 (2000). 45. Phan, L.T., 'Fire Performance of High-Strength Concrete: A Report of the State-ofthe-Art,' NISTIR 5934, Building and Fire Research Lab``oratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, December 1996). 46. Phan, L.T., and Carino, N.J., 'Review of mechanical properties of HSC at elevated temperature,' Journal of Materials in Civil Engineering, American Society of Civil Engineers, V.10 (1) (February, 1998) 58-64. 47. Phan, L.T., and Carino, N.J., 'Mechanical Properties of High Strength Concrete at Elevated Temperatures', NISTIR 6726, Building and Fire Research Laboratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, March 2001). 48. Phan, L.T., and Carino, N.J., 'Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures', ACI Materials Journal, American Concrete Institute, v. 99 (1) (January-February, 2002) 54-66. 49. Anderberg, Y., Spalling phenomena of HPC and OC. Proc., In Workshop on Fire Performance of High-Strength Concrete, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., 69-73 (1997). 50. Bažant, Z.P., Analysis of pore pressure: thermal stresses and fracture in rapidly heated concrete, Proc, In Workshop on Fire Performance of High-Strength Concrete, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., 155-164 (1997). 51. Kalifa, P., Menneteau, F.D., and Quenard, D., 'Spalling and pore pressure in HPC at high temperatures', Cement and Concrete Research, Vol. 30, 1915-1927 (2000). 52. Zeiml, M., Leithner, D., Lackner, R., and Mang, H.A., 'How do polypropylene fibers improve the spalling behavior of in-situ concrete?', Cement and Concrete Research, Vol. 36, 929-942 (2006). 53. 劉玉雯、陳豪吉、湯兆緯,「輕質骨材混凝土之隔熱性質」,輕質骨材及輕質骨材混凝土應用研討會論文集,嘉義,臺灣,pp. 83-98,2003。 54. 沈進發,陳舜田,沈得縣,「混凝土結構物火害後現場勘查之程序」,結構工程,第十三卷,第二期,43-59 頁,民國87 年。 55. 沈得縣,陳舜田,沈進發,「各國火害後混凝土結構物安全評估程序介紹」,建築物火害及災後安全評估法研討會論文集,43-70 頁,台北,台灣,民國88 年。 56. 陳舜田,「國內外火害工程研究簡介」,建築物火害及災後安全評估法研討會論文集,31-42 頁,台北,台灣,民國88 年。 57. Tang, C.W., 'Residual Compressive Strength and Fire Endurance of Lightweight Concrete Made from Sedimentary Lightweight Aggregates', Journal of Engineering, National Chung Hsing University, Vol. 20, No. 2, pp. 97-110 (2009). 58. 湯兆緯、劉得弘、羅智文、謝紹恆,「高溫作用下輕質粒料混凝土版之孔隙壓力」,混凝土科技,台灣混凝土學會會刊,第四卷,第二期,第34-39 頁(2010)。 59. Peng, H.S., Chen, H.J., Tang, C.W. and Chen, Y.P., 'Fire Performance and Thermal Insulation of Reinforced Lightweight Aggregate Concrete', Advanced Materials Research, Vols. 287-290, pp. 1065-1069 (2011). 60. 陳誠直、趙文成等,「含混凝土箱型鋼柱火害下軸向受力行為之研究」,內政部建築研究所委託研究報告(2010)。 61. 鄭吉誠,「高溫下高流動性鋼纖維混凝土爆裂現象研究」,國立台灣大學土木工程研究所碩士論文(1998)。 62. 李柏芳,「高性能混凝土受不同高溫延時作用下之握裹力探討」,中原大學土木工程研究所碩士論文(1998)。 63. 江茂利,「玻纖、輸氣劑、輕質骨材對高性能混凝土熱膨脹性質之影響」,國立台灣科技大學營建工程技術研究所碩士論文(1998)。 64. 陳彥睿,「鋼管圍束高強度纖維混凝土於高溫下力學行為研究」,國立台灣大學土木工程研究所碩士論文(1999)。 65. 王俊文,「混凝土受高溫而強度折減之分析」,雲林科技大學營建工程研究所碩士論文(2000)。 66. 楊金龍,「高強度混合纖維混凝土於高溫下行為研究」,國立台灣大學土木工程研究所碩士論文(2000)。 67. 鄭慶鴻,「活性粉混凝土於高溫下行為研究」,國立台灣大學土木工程研究所碩士論文(2001)。 68. 楊竣傑,「應用類神經網路預測混凝土受高溫影響之強度折減」,朝陽科技大學營建工程系碩士班碩士論文(2002)。 69. 周志遠,「高溫對玻璃纖維混凝土影響之研究」,中原大學土木工程研究所碩士論文(2004)。 70. 游翔淵,「添加玻璃纖維與奈米粘土對高溫下混凝土強度之影響」,中原大學土木工程研究所碩士論文(2005) 71. 賴嘉陽,「探討受高溫作用混凝土之波速與強度關係」,國立中興大學土木工程學系碩士班碩士論文(2007)。 72. 羅智文,「高溫作用下輕質粒料混凝土版之孔隙壓力」,國立中興大學土木工程學系碩士班碩士論文(2008)。 73. 廖侶翔,「混凝土添加不同熱學性質材料工程性能探討」,國立交通大學土木工程系所碩士論文(2009)。 74. 陳韋夷,「鋼柱在高溫環境下之潛變挫屈研究」,國立成功大學土木工程研究所碩士論文(2009)。 75. 李玉生、楊國珍等,「高溫下內灌混凝土耐火鋼箱型鋼柱之軸向受力行為研究」,內政部建築研究所協同研究報告(2010)。 76. Wang, Y.C., 'A simple method for calculating the fire resistance of concrete-filled CHS columns', Journal of Constructional Steel Research 54: 365–386 (2000). 77. Handoo, S.K., Agarwal, S. and Agarwal, S.K., 'Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures', Cement and Concrete Research, 32:1009–1018 (2002). 78. Tan, K.H., Ting, S.K., Huang Zhanfei, 'Visco-elasto-plastic analysis of steel frames in fire', ASCE Journal of Structural Engineering, 128(1): 105-114 (2002). 79. Chen, B. and Liu, J., 'Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures', Cement and Concrete Research, 34: 1065–1069 (2004). 80. Georgali, B. and Tsakiridis, P.E., 'Microstructure of fire-damaged concrete. A case study', Cement & Concrete Composites, 27:255–259 (2005). 81. Lau, A. and Anson, M., 'Effect of high temperatures on high performance steel fibre reinforced concrete', Cement and Concrete Research, 36:1698–1707 (2006). 82. Huang, Z.F., Tan, K.H. and Ting, S.K., 'Heating rate and boundary restraint effectson fire resistance of steel columns with creep', Engineering Structures 28(6): 805-817 (2006). 83. Yang, H., Han, L.H., Wang, Y.C., 'Effects of heating and loading histories on postfire cooling behaviour of concrete-filled steel tubular columns', Journal of Constructional Steel Research 64: 556–570(2008). 84. Annerel, E. and Taerwe, L., 'Revealing the temperature history in concrete after fire exposure by microscopic analysis', Cement and Concrete Research, 39:1239–1249 (2009). 85. Hong, S., Varma, A.H., 'Analytical modeling of the standard fire behavior of loaded CFT columns', Journal of Constructional Steel Research, 65: 54-69 (2009). 86. Sadaoui, A. and Khennane, A., 'Effect of transient reep on the behaviour of reinforced concrete columns in fire', Engineering Structures, 31(9): 2203-2208 (2009). 87. Sukontasukkul, P., Pomchiengpin, W. and Songpiriyakij, S., 'Post-crack (or postpeak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature', Construction and Building Materials, 24:1967–1974 (2010). 88. Emidio Nigro, Giuseppe Cefarelli, Antonio Bilotta, Gaetano Manfredi, Edoardo Cosenza, 'Guidelines for flexural resistance of FRP reinforced concrete slabs and beams in fire', Composites: Part B, 58:103–112(2014). 89. 楊慶生,「複合材料細觀結構力學與設計」,北京: 中國鐵道出版社(2000)。 90. 董振英,李慶斌,「纖維增強脆性複合材料細觀力學若干進展」,力學進展,31(4): 555―582 (2001)。 91. 廖美春,郭志昆,陳萬祥,「複合材料中纖維的抗拔機理」,纖維複合材料,35(3):35―38 (2005)。 92. 徐平,王明旭,潘一山,「鋼纖維長徑比對鋼纖維聚合物混凝土抗彎性能的影響」,機械工程材料,30(4)4:54~56 (2006)。 93. Mounajed, G. and Obeid, W., 'A new coupling F.E. model for the simulation of thermal Hydro-mechanical behaviour of concretes at high temperatures', Materials and Structures/Materiaux et Constructions, 37(7), pp. 422-432 (2004). 94. Powers, T.C., 'The Nonevaporable Water Content of Hardened Portland-Cement Paste–Its Significance for Concrete Research and Its Method of Determination,' Research Department Bulletin RX029, Portland Cement Association (1949). 95. Langton, C.A., and Roy, D.M., Morphology and Microstructure of Cement Paste/Rock Interfacial Regions, Proc. 7th Int. Congress on the Chemistry of Cement, Editions Septima, Paris, VIII:VII-127–132 (1980). 96. Alexander, K.M., and Taplin, J.H., The Structure of Concrete, Cement and Concrete Association, London (1964). 97. Pothisiri,T. and Panedpojaman, P., 'Modeling of bonding between steel rebar and concrete at elevated temperatures', Construction and Building Materials, 27, pp. 130–140 (2012). 98. Bazant, Z.P. and Kaplan, M.F., Concrete at high temperatures, Longman Group Limited (1996). 99. Yerex, L., Wenzel, T.H., and Davies, R., 'Bond strength of mild steel in polypropylene fiber reinforced concrete', ACI Journal, Proceedings, Vol. 82, No. 1, pp. 40-45 (1985). 100. Haddad, R.H., Al-Saleh, R.J. and Al-Akhras, N.M., 'Effect of elevated temperature on bond between steel reinforcement and fiber reinforced concrete', Fire Safety Journal, 43, pp. 334–343 (2008).
摘要: 
火害後,混凝土的微結構與力學性能將會產生劣化衰敗,進而影響鋼筋與混凝土之間的握裹性能。纖維對高溫後輕質骨材混凝土與鋼筋間握裹作用之文獻相對缺乏。鑑此,本研究旨在探討不同高溫作用後纖維輕質骨材混凝土(Fiber Lightweight Aggregate Concrete)的殘餘力學性質。
試驗變數包括混凝土種類(純輕質骨材混凝土及纖維輕質骨材混凝土)、混凝土強度(30MPa及50MPa兩種)、纖維種類(鋼纖維1%及聚丙烯纖維0.1%)、溫度(室溫、400℃、600℃及800℃皆持溫1小時),本研究旨在探討以上試驗變數對於纖維輕質骨材混凝土殘餘力學性質(抗壓強度、彈性模數、撓曲強度及握裹強度)及握裹-滑移之影響。
試驗結果顯示,隨爐內溫度上升,各項力學性質皆呈現衰減趨勢,此趨勢符合水泥於高溫火害劣化之趨勢,可以觀察到火害過程中主導混凝土性質之材料為水泥系材料,而骨材與纖維僅提供補強與高溫氣體通路之作用。
URI: http://hdl.handle.net/11455/96228
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:土木工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7104062141-1.pdf3.37 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.